These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38560917)

  • 1. Extremely Non-Equilibrium Hopping Transport and Photogeneration Efficiency in Organic Semiconductors: An Analytic Approach.
    Toropin AV; Huang L; Nikitenko VR; Prezhdo OV
    J Phys Chem Lett; 2024 Apr; 15(14):3884-3892. PubMed ID: 38560917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disorder and Photogeneration Efficiency in Organic Semiconductors.
    Toropin AV; Nikitenko VR; Korolev NA; Prezhdo OV
    J Phys Chem Lett; 2023 Sep; 14(35):7892-7896. PubMed ID: 37639665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Analytical Modeling of Hopping Transport of Charge Carriers and Excitations in Materials with Correlated Disorder.
    Saunina AY; Huang L; Nikitenko VR; Prezhdo OV
    J Phys Chem Lett; 2024 Mar; 15(9):2601-2605. PubMed ID: 38416805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Disordered Semiconductors as Networks Embedded in Space and Energy.
    Cuadra L; Salcedo-Sanz S; Nieto-Borge JC
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectricity in Disordered Organic Semiconductors under the Premise of the Gaussian Disorder Model and Its Variants.
    Mendels D; Tessler N
    J Phys Chem Lett; 2014 Sep; 5(18):3247-53. PubMed ID: 26276340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jumping Kinetic Monte Carlo: Fast and Accurate Simulations of Partially Delocalized Charge Transport in Organic Semiconductors.
    Willson JT; Liu W; Balzer D; Kassal I
    J Phys Chem Lett; 2023 Apr; 14(15):3757-3764. PubMed ID: 37044057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors.
    Xie W; Holub D; Kubař T; Elstner M
    J Chem Theory Comput; 2020 Apr; 16(4):2071-2084. PubMed ID: 32176844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A competitive hopping model for carrier transport in disordered organic semiconductors.
    Zhao C; Li C; Duan L
    Phys Chem Chem Phys; 2019 May; 21(19):9905-9911. PubMed ID: 31038510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory for spin diffusion in disordered organic semiconductors.
    Bobbert PA; Wagemans W; van Oost FW; Koopmans B; Wohlgenannt M
    Phys Rev Lett; 2009 Apr; 102(15):156604. PubMed ID: 19518664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy position of the transport path in disordered organic semiconductors.
    Oelerich JO; Jansson F; Nenashev AV; Gebhard F; Baranovskii SD
    J Phys Condens Matter; 2014 Jun; 26(25):255801. PubMed ID: 24888582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device.
    Zhao Y; Wang J
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials.
    Balzer D; Smolders TJAM; Blyth D; Hood SN; Kassal I
    Chem Sci; 2020 Dec; 12(6):2276-2285. PubMed ID: 34163994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps.
    Dong J; Wu C
    J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To Hop or Not to Hop? Understanding the Temperature Dependence of Spectral Diffusion in Organic Semiconductors.
    Athanasopoulos S; Hoffmann ST; Bässler H; Köhler A; Beljonne D
    J Phys Chem Lett; 2013 May; 4(10):1694-700. PubMed ID: 26282980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of intermolecular vibrations on the electronic coupling in organic semiconductors: the case of anthracene and perfluoropentacene.
    Martinelli NG; Olivier Y; Athanasopoulos S; Ruiz Delgado MC; Pigg KR; da Silva Filho DA; Sánchez-Carrera RS; Venuti E; Della Valle RG; Brédas JL; Beljonne D; Cornil J
    Chemphyschem; 2009 Sep; 10(13):2265-73. PubMed ID: 19637205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: from coherent to incoherent transport.
    Yao Y; Si W; Hou X; Wu CQ
    J Chem Phys; 2012 Jun; 136(23):234106. PubMed ID: 22779580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of the charge carrier mobility in disordered linear polymer materials.
    Toman P; Menšík M; Bartkowiak W; Pfleger J
    Phys Chem Chem Phys; 2017 Mar; 19(11):7760-7771. PubMed ID: 28262858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal size-dependent conductance fluctuations in disordered organic semiconductors.
    Massé A; Coehoorn R; Bobbert PA
    Phys Rev Lett; 2014 Sep; 113(11):116604. PubMed ID: 25259995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder.
    Kaiser W; Albes T; Gagliardi A
    Phys Chem Chem Phys; 2018 Mar; 20(13):8897-8908. PubMed ID: 29553153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge transport in organic semiconductors from the mapping approach to surface hopping.
    Runeson JE; Drayton TJG; Manolopoulos DE
    J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39377321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.