BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38561062)

  • 1. The CNS microenvironment promotes leukemia cell survival by disrupting tumor suppression and cell cycle regulation in pediatric T-cell acute lymphoblastic leukemia.
    Enlund S; Sinha I; Neofytou C; Amor AR; Papadakis K; Nilsson A; Jiang Q; Hermanson O; Holm F
    Exp Cell Res; 2024 Apr; 437(2):114015. PubMed ID: 38561062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-Derived Bone Marrow Spheroids Reveal Leukemia-Initiating Cells Supported by Mesenchymal Hypoxic Niches in Pediatric B-ALL.
    Balandrán JC; Dávila-Velderrain J; Sandoval-Cabrera A; Zamora-Herrera G; Terán-Cerqueda V; García-Stivalet LA; Limón-Flores JA; Armenta-Castro E; Rodríguez-Martínez A; Leon-Chavez BA; Vallejo-Ruiz V; Hassane DC; Pérez-Tapia SM; Ortiz-Navarrete V; Guzman ML; Pelayo R
    Front Immunol; 2021; 12():746492. PubMed ID: 34737747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function.
    Wang W; Zimmerman G; Huang X; Yu S; Myers J; Wang Y; Moreton S; Nthale J; Awadallah A; Beck R; Xin W; Wald D; Huang AY; Zhou L
    Cancer Res; 2016 Mar; 76(6):1641-52. PubMed ID: 26801976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia.
    Dander E; Palmi C; D'Amico G; Cazzaniga G
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting.
    Chiarini F; Lonetti A; Evangelisti C; Buontempo F; Orsini E; Evangelisti C; Cappellini A; Neri LM; McCubrey JA; Martelli AM
    Biochim Biophys Acta; 2016 Mar; 1863(3):449-463. PubMed ID: 26334291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microenvironmental cues for T-cell acute lymphoblastic leukemia development.
    Passaro D; Quang CT; Ghysdael J
    Immunol Rev; 2016 May; 271(1):156-72. PubMed ID: 27088913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.
    Jost TR; Borga C; Radaelli E; Romagnani A; Perruzza L; Omodho L; Cazzaniga G; Biondi A; Indraccolo S; Thelen M; Te Kronnie G; Grassi F
    J Leukoc Biol; 2016 Jun; 99(6):1077-87. PubMed ID: 26931577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia.
    Gossai NP; Gordon PM
    Front Pediatr; 2017; 5():90. PubMed ID: 28491865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allogeneic hematopoietic cell transplantation in children with relapsed acute lymphoblastic leukemia isolated to the central nervous system.
    Harker-Murray PD; Thomas AJ; Wagner JE; Weisdorf D; Luo X; DeFor TE; Verneris MR; Dusenbery KE; MacMillan ML; Tolar J; Baker KS; Orchard PJ
    Biol Blood Marrow Transplant; 2008 Jun; 14(6):685-92. PubMed ID: 18489994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6.
    Pan C; Hu T; Liu P; Ma D; Cao S; Shang Q; Zhang L; Chen Q; Fang Q; Wang J
    J Transl Med; 2023 Sep; 21(1):593. PubMed ID: 37670388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric-Like Acute Lymphoblastic Leukemia Therapy in Adults With Lymphoblastic Lymphoma: The GRAALL-LYSA LL03 Study.
    Lepretre S; Touzart A; Vermeulin T; Picquenot JM; Tanguy-Schmidt A; Salles G; Lamy T; Béné MC; Raffoux E; Huguet F; Chevallier P; Bologna S; Bouabdallah R; Benichou J; Brière J; Moreau A; Tallon-Simon V; Seris S; Graux C; Asnafi V; Ifrah N; Macintyre E; Dombret H
    J Clin Oncol; 2016 Feb; 34(6):572-80. PubMed ID: 26644537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of the immune environment in bone marrow from children with recurrent B cell precursor acute lymphoblastic leukemia.
    Mikami T; Kato I; Wing JB; Ueno H; Tasaka K; Tanaka K; Kubota H; Saida S; Umeda K; Hiramatsu H; Isobe T; Hiwatari M; Okada A; Chiba K; Shiraishi Y; Tanaka H; Miyano S; Arakawa Y; Oshima K; Koh K; Adachi S; Iwaisako K; Ogawa S; Sakaguchi S; Takita J
    Cancer Sci; 2022 Jan; 113(1):41-52. PubMed ID: 34716967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD99 antibody disrupts T-cell acute lymphoblastic leukemia adhesion to meningeal cells and attenuates chemoresistance.
    Ebadi M; Jonart LM; Ostergaard J; Gordon PM
    Sci Rep; 2021 Dec; 11(1):24374. PubMed ID: 34934147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. B- and T-cell acute lymphoblastic leukemias evade chemotherapy at distinct sites in the bone marrow.
    Barz MJ; Behrmann L; Capron D; Zuchtriegel G; Steffen FD; Kunz L; Zhang Y; Vermeerbergen IJ; Marovca B; Kirschmann M; Zech A; Nombela-Arrieta C; Ziegler U; Schroeder T; Bornhauser B; Bourquin JP
    Haematologica; 2023 May; 108(5):1244-1258. PubMed ID: 36325888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data.
    Lenk L; Alsadeq A; Schewe DM
    Cancer Metastasis Rev; 2020 Mar; 39(1):173-187. PubMed ID: 31970588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex-based disparities in outcome in pediatric acute lymphoblastic leukemia: a Children's Oncology Group report.
    Gupta S; Teachey DT; Chen Z; Rabin KR; Dunsmore KP; Larsen EC; Maloney KW; Mattano LA; Winter SS; Carroll AJ; Heerema NA; Borowitz MJ; Wood BL; Carroll WL; Raetz EA; Winick NJ; Loh ML; Hunger SP; Devidas M
    Cancer; 2022 May; 128(9):1863-1870. PubMed ID: 35201611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiopurine Enhanced ALL Maintenance (TEAM): study protocol for a randomized study to evaluate the improvement in disease-free survival by adding very low dose 6-thioguanine to 6-mercaptopurine/methotrexate-based maintenance therapy in pediatric and adult patients (0-45 years) with newly diagnosed B-cell precursor or T-cell acute lymphoblastic leukemia treated according to the intermediate risk-high group of the ALLTogether1 protocol.
    Toksvang LN; Als-Nielsen B; Bacon C; Bertasiute R; Duarte X; Escherich G; Helgadottir EA; Johannsdottir IR; Jónsson ÓG; Kozlowski P; Langenskjöld C; Lepik K; Niinimäki R; Overgaard UM; Punab M; Räty R; Segers H; van der Sluis I; Smith OP; Strullu M; Vaitkevičienė G; Wik HS; Heyman M; Schmiegelow K
    BMC Cancer; 2022 May; 22(1):483. PubMed ID: 35501736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia.
    Kuang SQ; Fang Z; Zweidler-McKay PA; Yang H; Wei Y; Gonzalez-Cervantes EA; Boumber Y; Garcia-Manero G
    PLoS One; 2013; 8(4):e61807. PubMed ID: 23637910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEX-Induced SREBF1 Promotes BMSCs Differentiation into Adipocytes to Attract and Protect Residual T-Cell Acute Lymphoblastic Leukemia Cells After Chemotherapy.
    Jia R; Sun T; Zhao X; Li G; Xia Y; Zhou Y; Li W; Li W; Ma D; Ye J; Ji M; Ji C
    Adv Sci (Weinh); 2023 Jul; 10(19):e2205854. PubMed ID: 37072664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia.
    Quagliano A; Gopalakrishnapillai A; Kolb EA; Barwe SP
    Blood Adv; 2020 Sep; 4(18):4393-4405. PubMed ID: 32926125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.