These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38561493)

  • 1. Quantification and description of photothermal heating effects in plasmon-assisted electrochemistry.
    Al-Amin M; Hemmer JV; Joshi PB; Fogelman K; Wilson AJ
    Commun Chem; 2024 Apr; 7(1):70. PubMed ID: 38561493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmoelectric Potential in Plasmon-Mediated Electrochemistry.
    Ou W; Fan Y; Shen J; Xu Y; Huang D; Zhou B; Lo TW; Li S; Li YY; Lei D; Lu J
    Nano Lett; 2022 Oct; ():. PubMed ID: 36190454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Assisted Ammonia Electrosynthesis.
    Contreras E; Nixon R; Litts C; Zhang W; Alcorn FM; Jain PK
    J Am Chem Soc; 2022 Jun; 144(24):10743-10751. PubMed ID: 35671395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.
    Maity S; Wu WC; Tracy JB; Clarke LI; Bochinski JR
    Nanoscale; 2017 Aug; 9(32):11605-11618. PubMed ID: 28770914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects.
    Zhang X; Li X; Reish ME; Zhang D; Su NQ; Gutiérrez Y; Moreno F; Yang W; Everitt HO; Liu J
    Nano Lett; 2018 Mar; 18(3):1714-1723. PubMed ID: 29438619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy.
    Schorr NB; Counihan MJ; Bhargava R; Rodríguez-López J
    Anal Chem; 2020 Mar; 92(5):3666-3673. PubMed ID: 32043873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering Photoelectronic and Photothermal Effects in Plasmon-Mediated Electrocatalytic CO
    Wei Y; Mao Z; Jiang TW; Li H; Ma XY; Zhan C; Cai WB
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317740. PubMed ID: 38318927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.
    Zhou R; Basile F
    Anal Chem; 2017 Sep; 89(17):8704-8712. PubMed ID: 28727443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis.
    Ganguli S; Zhao Z; Parlak O; Hattori Y; Sá J; Sekretareva A
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302394. PubMed ID: 37078401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and Nonthermal Effects in Plasmon-Mediated Electrochemistry at Nanostructured Ag Electrodes.
    Ou W; Zhou B; Shen J; Lo TW; Lei D; Li S; Zhong J; Li YY; Lu J
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6790-6793. PubMed ID: 32040261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.
    Elias RC; Linic S
    J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy.
    Yu Y; Williams JD; Willets KA
    Faraday Discuss; 2018 Oct; 210(0):29-39. PubMed ID: 30046791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Photothermal and Hot Charge Carrier Effects in Plasmon-Driven Nanoparticle Syntheses.
    Kamarudheen R; Castellanos GW; Kamp LPJ; Clercx HJH; Baldi A
    ACS Nano; 2018 Aug; 12(8):8447-8455. PubMed ID: 30071160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Functionalized Au-Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance.
    Zhao Y; Sarhan RM; Eljarrat A; Kochovski Z; Koch C; Schmidt B; Koopman W; Lu Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17259-17272. PubMed ID: 35389208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Bubble Growth in Plasmonic Nanoparticle Suspension.
    Zhang Q; Neal RD; Huang D; Neretina S; Lee E; Luo T
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26680-26687. PubMed ID: 32402195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 221 K Local Photothermal Heating in a Si Plasmonic Waveguide Loaded with a Co Thin Film.
    Ota N; Miyauchi T; Shimizu H
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions.
    Chen K; Wang H
    Nano Lett; 2023 Apr; 23(7):2870-2876. PubMed ID: 36921149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-driven selective deposition of au bipyramidal nanoparticles.
    Guffey MJ; Miller RL; Gray SK; Scherer NF
    Nano Lett; 2011 Oct; 11(10):4058-66. PubMed ID: 21902194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-assisted photothermal heating of a plasmonic nanoparticle-suspended droplet in a microchannel.
    Walsh T; Lee J; Park K
    Analyst; 2015 Mar; 140(5):1535-42. PubMed ID: 25587691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms.
    Ding S; Zhang J; Liu C; Li N; Zhang S; Wang Z; Xi M
    ACS Omega; 2022 Jun; 7(24):20750-20760. PubMed ID: 35755366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.