These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38561525)

  • 1. AI-PUCMDL: artificial intelligence assisted plant counting through unmanned aerial vehicles in India's mountainous regions.
    Thakur D; Srinivasan S
    Environ Monit Assess; 2024 Apr; 196(4):406. PubMed ID: 38561525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of Antarctica's Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI.
    Raniga D; Amarasingam N; Sandino J; Doshi A; Barthelemy J; Randall K; Robinson SA; Gonzalez F; Bollard B
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Intelligent identification of livestock, a source of
    Xue J; Xia S; Li Z; Wang X; Huang L; He R; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 May; 35(2):121-127. PubMed ID: 37253560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV).
    Neupane B; Horanont T; Hung ND
    PLoS One; 2019; 14(10):e0223906. PubMed ID: 31622450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of AI-assisted techniques for epiphyte plant monitoring and identification from drone images.
    V V SV; V S; Sivanpillai R; Brown GK
    J Environ Manage; 2024 Sep; 367():121996. PubMed ID: 39088905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning.
    Melnychenko O; Scislo L; Savenko O; Sachenko A; Radiuk P
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of tea leaf blight in UAV remote sensing images by integrating super-resolution and detection networks.
    Jiang Y; Wei Z; Hu G
    Environ Monit Assess; 2024 Oct; 196(11):1044. PubMed ID: 39392511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV.
    Shamta I; Demir BE
    PLoS One; 2024; 19(3):e0299058. PubMed ID: 38470887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery.
    Katari S; Venkatesh S; Stewart C; Khanal S
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region.
    Sapkota S; Paudyal DR
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping.
    Nguyen C; Sagan V; Bhadra S; Moose S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective coastal Escherichia coli monitoring by unmanned aerial vehicles (UAV) thermal infrared images.
    Cheng KH; Jiao JJ; Luo X; Yu S
    Water Res; 2022 Aug; 222():118900. PubMed ID: 35932703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Scoring of Rhizoctonia Crown and Root Rot Affected Sugar Beet Fields from Orthorectified UAV Images Using Machine Learning.
    Ispizua Yamati FR; Günder M; Barreto A; Bömer J; Laufer D; Bauckhage C; Mahlein AK
    Plant Dis; 2024 Mar; 108(3):711-724. PubMed ID: 37755420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitating the Work of Unmanned Aerial Vehicle Operators Using Artificial Intelligence: An Intelligent Filter for Command-and-Control Maps to Reduce Cognitive Workload.
    Zak Y; Parmet Y; Oron-Gilad T
    Hum Factors; 2023 Nov; 65(7):1345-1360. PubMed ID: 35392697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UAV hyperspectral remote sensor images for mango plant disease and pest identification using MD-FCM and XCS-RBFNN.
    Pansy DL; Murali M
    Environ Monit Assess; 2023 Aug; 195(9):1120. PubMed ID: 37650944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of dump and landfill waste volumes using unmanned aerial systems.
    Filkin T; Sliusar N; Huber-Humer M; Ritzkowski M; Korotaev V
    Waste Manag; 2022 Feb; 139():301-308. PubMed ID: 34998186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coverage Area Decision Model by Using Unmanned Aerial Vehicles Base Stations for Ad Hoc Networks.
    Majeed S; Sohail A; Qureshi KN; Iqbal S; Javed IT; Crespi N; Nagmeldin W; Abdelmaboud A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface sediment classification using a deep learning model and unmanned aerial vehicle data of tidal flats.
    Kim KL; Woo HJ; Jou HT; Jung HC; Lee SK; Ryu JH
    Mar Pollut Bull; 2024 Jan; 198():115823. PubMed ID: 38039578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.