These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38561979)

  • 1. ConvNeXt-MHC: improving MHC-peptide affinity prediction by structure-derived degenerate coding and the ConvNeXt model.
    Zhang L; Song W; Zhu T; Liu Y; Chen W; Cao Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38561979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences.
    Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STMHCpan, an accurate Star-Transformer-based extensible framework for predicting MHC I allele binding peptides.
    Ye Z; Li S; Mi X; Shao B; Dai Z; Ding B; Feng S; Sun B; Shen Y; Xiao Z
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.
    Goodswen SJ; Kennedy PJ; Ellis JT
    PLoS One; 2014; 9(12):e115745. PubMed ID: 25545691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate modeling of peptide-MHC structures with AlphaFold.
    Mikhaylov V; Brambley CA; Keller GLJ; Arbuiso AG; Weiss LI; Baker BM; Levine AJ
    Structure; 2024 Feb; 32(2):228-241.e4. PubMed ID: 38113889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction.
    Qu W; You R; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions.
    Xu Y; Luo C; Qian M; Huang X; Zhu S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25521198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of MHC-peptide binding: a systematic and comprehensive overview.
    Lafuente EM; Reche PA
    Curr Pharm Des; 2009; 15(28):3209-20. PubMed ID: 19860671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting MHC-peptide binding affinity by differential boundary tree.
    Feng P; Zeng J; Ma J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i254-i261. PubMed ID: 34252932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting MHC-II binding affinity using multiple instance regression.
    EL-Manzalawy Y; Dobbs D; Honavar V
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1067-79. PubMed ID: 20855923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data.
    Garde C; Ramarathinam SH; Jappe EC; Nielsen M; Kringelum JV; Trolle T; Purcell AW
    Immunogenetics; 2019 Jul; 71(7):445-454. PubMed ID: 31183519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.