These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38561979)

  • 21. Structure-aware deep model for MHC-II peptide binding affinity prediction.
    Yu Y; Zu L; Jiang J; Wu Y; Wang Y; Xu M; Liu Q
    BMC Genomics; 2024 Jan; 25(1):127. PubMed ID: 38291350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding.
    Zeng H; Gifford DK
    Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design.
    Zeng H; Gifford DK
    Cell Syst; 2019 Aug; 9(2):159-166.e3. PubMed ID: 31176619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets.
    Shao XM; Bhattacharya R; Huang J; Sivakumar IKA; Tokheim C; Zheng L; Hirsch D; Kaminow B; Omdahl A; Bonsack M; Riemer AB; Velculescu VE; Anagnostou V; Pagel KA; Karchin R
    Cancer Immunol Res; 2020 Mar; 8(3):396-408. PubMed ID: 31871119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning.
    Wang G; Wu T; Ning W; Diao K; Sun X; Wang J; Wu C; Chen J; Xu D; Liu XS
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36960769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of T Cell Receptor Alpha and Beta CDR3, MHC Typing, V and J Genes to Peptide Binding Prediction.
    Springer I; Tickotsky N; Louzoun Y
    Front Immunol; 2021; 12():664514. PubMed ID: 33981311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring.
    Lanzarotti E; Marcatili P; Nielsen M
    Mol Immunol; 2018 Feb; 94():91-97. PubMed ID: 29288899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior.
    Kim Y; Sidney J; Pinilla C; Sette A; Peters B
    BMC Bioinformatics; 2009 Nov; 10():394. PubMed ID: 19948066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. iTCep: a deep learning framework for identification of T cell epitopes by harnessing fusion features.
    Zhang Y; Jian X; Xu L; Zhao J; Lu M; Lin Y; Xie L
    Front Genet; 2023; 14():1141535. PubMed ID: 37229205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting peptide binding to Major Histocompatibility Complex molecules.
    Liao WW; Arthur JW
    Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.
    Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J
    BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set.
    Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB
    Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction.
    Guo L; Luo C; Zhu S
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 24564280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. USMPep: universal sequence models for major histocompatibility complex binding affinity prediction.
    Vielhaben J; Wenzel M; Samek W; Strodthoff N
    BMC Bioinformatics; 2020 Jul; 21(1):279. PubMed ID: 32615972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.