BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38562112)

  • 1. Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation.
    Samolyk BL; Pace ZY; Li J; Billiar KL; Coburn JM; Whittington CF; Pins GD
    Tissue Eng Part C Methods; 2024 May; 30(5):217-228. PubMed ID: 38562112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
    Carnes ME; Pins GD
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2308-2319. PubMed ID: 31967415
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Grasman JM; Page RL; Pins GD
    Tissue Eng Part A; 2017 Aug; 23(15-16):773-783. PubMed ID: 28351217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.
    Grasman JM; Do DM; Page RL; Pins GD
    Biomaterials; 2015 Dec; 72():49-60. PubMed ID: 26344363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aligned Collagen Sponges with Tunable Pore Size for Skeletal Muscle Tissue Regeneration.
    Kozan NG; Caswell S; Patel M; Grasman JM
    J Funct Biomater; 2023 Oct; 14(11):. PubMed ID: 37998102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering functional and histological regeneration of vascularized skeletal muscle.
    Gilbert-Honick J; Iyer SR; Somers SM; Lovering RM; Wagner K; Mao HQ; Grayson WL
    Biomaterials; 2018 May; 164():70-79. PubMed ID: 29499437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
    Grasman JM; Zayas MJ; Page RL; Pins GD
    Acta Biomater; 2015 Oct; 25():2-15. PubMed ID: 26219862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.
    Carnes ME; Pins GD
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32751847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity.
    Caliari SR; Harley BA
    Biomaterials; 2011 Aug; 32(23):5330-40. PubMed ID: 21550653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds.
    McClure MJ; Clark NM; Hyzy SL; Chalfant CE; Olivares-Navarrete R; Boyan BD; Schwartz Z
    Acta Biomater; 2016 Jul; 39():44-54. PubMed ID: 27142254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss.
    Endo Y; Samandari M; Karvar M; Mostafavi A; Quint J; Rinoldi C; Yazdi IK; Swieszkowski W; Mauney J; Agarwal S; Tamayol A; Sinha I
    Biomaterials; 2023 May; 296():122058. PubMed ID: 36841214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration.
    Wang L; Li T; Wang Z; Hou J; Liu S; Yang Q; Yu L; Guo W; Wang Y; Guo B; Huang W; Wu Y
    Biomaterials; 2022 Jun; 285():121537. PubMed ID: 35500394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment.
    Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S
    Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds.
    Bilge S; Ergene E; Talak E; Gokyer S; Donar YO; Sınağ A; Yilgor Huri P
    J Mater Sci Mater Med; 2021 Jun; 32(7):73. PubMed ID: 34152502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of dense anisotropic collagen scaffolds using biaxial compression.
    Zitnay JL; Reese SP; Tran G; Farhang N; Bowles RD; Weiss JA
    Acta Biomater; 2018 Jan; 65():76-87. PubMed ID: 29128533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.