These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3856245)

  • 1. Ethylation of poly(dC-dG).poly(dC-dG) by ethyl methanesulfonate stimulates the activity of mammalian DNA methyltransferase in vitro.
    Farrance IK; Ivarie R
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1045-9. PubMed ID: 3856245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic methylation of DNA and poly(dG-dC) X poly(dG-dC) modified by 4-acetoxyaminoquinoline-1-oxide, the ultimate carcinogen of 4-nitroquinoline-1-oxide.
    Pfohl-Leszkowicz A; Galiegue-Zouitina S; Bailleul B; Loucheux-Lefebvre MH; Dirheimer G
    FEBS Lett; 1983 Oct; 163(1):85-8. PubMed ID: 6628695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of DNA methyltransferase with aminofluorene and N-acetylaminofluorene modified poly(dC-dG).
    Ruchirawat M; Becker FF; Lapeyre JN
    Nucleic Acids Res; 1984 Apr; 12(7):3357-72. PubMed ID: 6718252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential binding of DNA methyltransferase and increased de novo methylation of deoxyinosine containing DNA.
    Pfeifer GP; Drahovsky D
    FEBS Lett; 1986 Oct; 207(1):75-8. PubMed ID: 3770195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of rat liver DNA methyltransferase interaction with anti-benzo[a]pyrenediol epoxide modified DNA templates.
    Ruchirawat M; Becker FF; Lapeyre JN
    Biochemistry; 1984 Nov; 23(23):5426-32. PubMed ID: 6095897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic methylation of chemically alkylated DNA and poly(dG-dC) X poly(dG-dC) in B and Z forms.
    Pfohl-Leszkowicz A; Boiteux S; Laval J; Keith G; Dirheimer G
    Biochem Biophys Res Commun; 1983 Oct; 116(2):682-8. PubMed ID: 6651830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian DNA methyltransferases prefer poly(dI-dC) as substrate.
    Pedrali-Noy G; Weissbach A
    J Biol Chem; 1986 Jun; 261(17):7600-2. PubMed ID: 3711099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pre-existing methylation on the de novo activity of eukaryotic DNA methyltransferase.
    Carotti D; Funiciello S; Palitti F; Strom R
    Biochemistry; 1998 Jan; 37(4):1101-8. PubMed ID: 9454602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation. Inhibition of de novo and maintenance methylation in vitro by RNA and synthetic polynucleotides.
    Bolden A; Ward C; Siedlecki JA; Weissbach A
    J Biol Chem; 1984 Oct; 259(20):12437-43. PubMed ID: 6208188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases.
    Aoki A; Suetake I; Miyagawa J; Fujio T; Chijiwa T; Sasaki H; Tajima S
    Nucleic Acids Res; 2001 Sep; 29(17):3506-12. PubMed ID: 11522819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of DNA cytosine 5-methyltransferase from human placenta.
    Pfeifer GP; Grünwald S; Boehm TL; Drahovsky D
    Biochim Biophys Acta; 1983 Aug; 740(3):323-30. PubMed ID: 6409149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential alkylation by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) of guanines with guanines as neighboring bases in DNA.
    Briscoe WT; Duarte SP
    Biochem Pharmacol; 1988 Mar; 37(6):1061-6. PubMed ID: 3355582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain.
    Pradhan S; Roberts RJ
    EMBO J; 2000 May; 19(9):2103-14. PubMed ID: 10790376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methylase from HeLa cell nuclei.
    Roy PH; Weissbach A
    Nucleic Acids Res; 1975 Oct; 2(10):1669-84. PubMed ID: 1187340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA.
    Bestor TH; Ingram VM
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5559-63. PubMed ID: 6577443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-methylase from regenerating rat liver: purification and characterisation.
    Simon D; Grunert F; von Acken U; Döring HP; Kröger H
    Nucleic Acids Res; 1978 Jun; 5(6):2153-67. PubMed ID: 673848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of proteins that stimulate the activity of mammalian DNA methyltransferase.
    Tomassetti A; Driever PH; Pfeifer GP; Drahovsky D
    Biochim Biophys Acta; 1988 Nov; 951(1):201-12. PubMed ID: 3142521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative conformations of DNA modified by N-2-acetylaminofluorene.
    Grunberger D; Santella RM
    J Supramol Struct Cell Biochem; 1981; 17(3):231-44. PubMed ID: 7328672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanisms and interaction of rat liver DNA methyltransferase with defined DNA substrates.
    Ruchirawat M; Noshari J; Lapeyre JN
    Mol Cell Biochem; 1987 Jul; 76(1):45-54. PubMed ID: 3627114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of de novo DNA methyltransferase activity by high concentrations of double-stranded DNA.
    Palitti F; Carotti D; Grünwald S; Rispoli M; Whitehead EP; Salerno C; Strom R; Drahovsky D
    Biochim Biophys Acta; 1987 Dec; 910(3):292-6. PubMed ID: 3676327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.