BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38562866)

  • 1. The L-lactate dehydrogenases of
    Florek LC; Lin X; Lin YC; Lin MH; Chakraborty A; Price-Whelan A; Tong L; Rahme L; Dietrich LEP
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562866
    [No Abstract]   [Full Text] [Related]  

  • 2. The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding.
    Lin YC; Cornell WC; Jo J; Price-Whelan A; Dietrich LEP
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206167
    [No Abstract]   [Full Text] [Related]  

  • 3. Cloning of a Neisseria meningitidis gene for L-lactate dehydrogenase (L-LDH): evidence for a second meningococcal L-LDH with different regulation.
    Erwin AL; Gotschlich EC
    J Bacteriol; 1996 Aug; 178(16):4807-13. PubMed ID: 8759842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1.
    Wang Y; Xiao D; Liu Q; Zhang Y; Hu C; Sun J; Yang C; Xu P; Ma C; Gao C
    Environ Microbiol Rep; 2018 Oct; 10(5):569-575. PubMed ID: 30066495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum.
    Georgi T; Engels V; Wendisch VF
    J Bacteriol; 2008 Feb; 190(3):963-71. PubMed ID: 18039772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501.
    Gao C; Wang Y; Zhang Y; Lv M; Dou P; Xu P; Ma C
    J Bacteriol; 2015 Jul; 197(13):2239-2247. PubMed ID: 25917905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
    Gao C; Hu C; Zheng Z; Ma C; Jiang T; Dou P; Zhang W; Che B; Wang Y; Lv M; Xu P
    J Bacteriol; 2012 May; 194(10):2687-92. PubMed ID: 22408166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role of the transcriptional regulator LldR (NCgl2814) in glutamate metabolism under biotin-limited conditions in Corynebacterium glutamicum.
    Supkulsutra T; Maeda T; Kumagai K; Wachi M
    J Gen Appl Microbiol; 2013; 59(3):207-14. PubMed ID: 23863291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources.
    Reinhart AA; Oglesby-Sherrouse AG
    Genes (Basel); 2016 Dec; 7(12):. PubMed ID: 27983658
    [No Abstract]   [Full Text] [Related]  

  • 10. Host-Derived Metabolites Modulate Transcription of
    Gillis CC; Winter MG; Chanin RB; Zhu W; Spiga L; Winter SE
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30617205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
    Stansen C; Uy D; Delaunay S; Eggeling L; Goergen JL; Wendisch VF
    Appl Environ Microbiol; 2005 Oct; 71(10):5920-8. PubMed ID: 16204505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Distinct L-Lactate Dehydrogenases Play a Role in the Survival of Neisseria gonorrhoeae in Cervical Epithelial Cells.
    Chen NH; Ong CY; O'sullivan J; Ibranovic I; Davey K; Edwards JL; McEwan AG
    J Infect Dis; 2020 Jan; 221(3):449-453. PubMed ID: 31541571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population dynamics and transcriptomic responses of
    Cheng Y; Yam JKH; Cai Z; Ding Y; Zhang LH; Deng Y; Yang L
    NPJ Biofilms Microbiomes; 2019; 5(1):1. PubMed ID: 30675369
    [No Abstract]   [Full Text] [Related]  

  • 14. Light/Dark and Temperature Cycling Modulate Metabolic Electron Flow in Pseudomonas aeruginosa Biofilms.
    Kahl LJ; Eckartt KN; Morales DK; Price-Whelan A; Dietrich LEP
    mBio; 2022 Aug; 13(4):e0140722. PubMed ID: 35938725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Approach To Identify Inhibitors of Iron Acquisition Systems of Pseudomonas aeruginosa.
    Kannon M; Nebane NM; Ruiz P; McKellip S; Vinson PN; Mitra A
    Microbiol Spectr; 2022 Oct; 10(5):e0243722. PubMed ID: 36098531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa.
    Nguyen AT; Jones JW; Ruge MA; Kane MA; Oglesby-Sherrouse AG
    J Bacteriol; 2015 Jul; 197(14):2265-75. PubMed ID: 25917911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterococcus faecalis Antagonizes Pseudomonas aeruginosa Growth in Mixed-Species Interactions.
    Tan CAZ; Lam LN; Biukovic G; Soh EY; Toh XW; Lemos JA; Kline KA
    J Bacteriol; 2022 Jul; 204(7):e0061521. PubMed ID: 35758750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas aeruginosa PrrF Small RNAs Regulate Iron Homeostasis during Acute Murine Lung Infection.
    Reinhart AA; Nguyen AT; Brewer LK; Bevere J; Jones JW; Kane MA; Damron FH; Barbier M; Oglesby-Sherrouse AG
    Infect Immun; 2017 May; 85(5):. PubMed ID: 28289146
    [No Abstract]   [Full Text] [Related]  

  • 19. A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells.
    Atack JM; Ibranovic I; Ong CL; Djoko KY; Chen NH; Vanden Hoven R; Jennings MP; Edwards JL; McEwan AG
    J Infect Dis; 2014 Oct; 210(8):1311-8. PubMed ID: 24737798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa.
    Reinhart AA; Powell DA; Nguyen AT; O'Neill M; Djapgne L; Wilks A; Ernst RK; Oglesby-Sherrouse AG
    Infect Immun; 2015 Mar; 83(3):863-75. PubMed ID: 25510881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.