These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38563244)

  • 1. Agent-based modeling of stress anisotropy driven nematic ordering in growing biofilms.
    Li C; Nijjer J; Feng L; Zhang Q; Yan J; Zhang S
    Soft Matter; 2024 Apr; 20(16):3401-3410. PubMed ID: 38563244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis and cell ordering in confined bacterial biofilms.
    Zhang Q; Li J; Nijjer J; Lu H; Kothari M; Alert R; Cohen T; Yan J
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34330824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical forces drive a reorientation cascade leading to biofilm self-patterning.
    Nijjer J; Li C; Zhang Q; Lu H; Zhang S; Yan J
    Nat Commun; 2021 Nov; 12(1):6632. PubMed ID: 34789754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress anisotropy in confined populations of growing rods.
    Isensee J; Hupe L; Golestanian R; Bittihn P
    J R Soc Interface; 2022 Nov; 19(196):20220512. PubMed ID: 36349447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of active nematics in chaining bacterial biofilms.
    Yaman YI; Demir E; Vetter R; Kocabas A
    Nat Commun; 2019 May; 10(1):2285. PubMed ID: 31123251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms.
    Pearce P; Song B; Skinner DJ; Mok R; Hartmann R; Singh PK; Jeckel H; Oishi JS; Drescher K; Dunkel J
    Phys Rev Lett; 2019 Dec; 123(25):258101. PubMed ID: 31922766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agent-Based Modeling Demonstrates How Local Chemotactic Behavior Can Shape Biofilm Architecture.
    Sweeney EG; Nishida A; Weston A; Bañuelos MS; Potter K; Conery J; Guillemin K
    mSphere; 2019 May; 4(3):. PubMed ID: 31142622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution.
    Wang L; Keatch R; Zhao Q; Wright JA; Bryant CE; Redmann AL; Terentjev EM
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates.
    Fei C; Mao S; Yan J; Alert R; Stone HA; Bassler BL; Wingreen NS; Košmrlj A
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7622-7632. PubMed ID: 32193350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bistability of Dielectrically Anisotropic Nematic Crystals and the Adaptation of Endothelial Collectives to Stress Fields.
    Stefopoulos G; Lendenmann T; Schutzius TM; Giampietro C; Roy T; Chala N; Giavazzi F; Cerbino R; Poulikakos D; Ferrari A
    Adv Sci (Weinh); 2022 May; 9(16):e2102148. PubMed ID: 35344288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.
    Cheong AG; Rey AD
    Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms.
    Kurz DL; Secchi E; Carrillo FJ; Bourg IC; Stocker R; Jimenez-Martinez J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122202119. PubMed ID: 35858419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of shear stress and growth conditions on detachment and physical properties of biofilms.
    Paul E; Ochoa JC; Pechaud Y; Liu Y; Liné A
    Water Res; 2012 Nov; 46(17):5499-5508. PubMed ID: 22898671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport.
    Jones AD; Buie CR
    Sci Rep; 2019 Feb; 9(1):2602. PubMed ID: 30796283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells.
    Godain A; Vogel TM; Fongarland P; Haddour N
    Biosens Bioelectron; 2024 Jan; 244():115806. PubMed ID: 37944355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates.
    Abbas F; Sudarsan R; Eberl HJ
    Math Biosci Eng; 2012 Apr; 9(2):215-39. PubMed ID: 22901062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.
    Ai H; Xu J; Huang W; He Q; Ni B; Wang Y
    Water Sci Technol; 2016; 73(7):1572-82. PubMed ID: 27054728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties.
    Pechaud Y; Derlon N; Queinnec I; Bessiere Y; Paul E
    Water Res; 2024 Feb; 250():120985. PubMed ID: 38118257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of shear dynamics in biofilm formation.
    Tsagkari E; Connelly S; Liu Z; McBride A; Sloan WT
    NPJ Biofilms Microbiomes; 2022 Apr; 8(1):33. PubMed ID: 35487949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.