BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38563348)

  • 1. Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings.
    Aravind I; Wang YY; Wang Y; Li R; Cai Z; Zhao B; Zhang B; Weng S; Shahriar R; Cronin SB
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17393-17400. PubMed ID: 38563348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures.
    Wang Y; Aravind I; Cai Z; Shen L; Gibson GN; Chen J; Wang B; Shi H; Song B; Guignon E; Cady NC; Page WD; Pilar A; Cronin SB
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17459-17465. PubMed ID: 32212673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures.
    Wang Y; Shen L; Wang Y; Hou B; Gibson GN; Poudel N; Chen J; Shi H; Guignon E; Cady NC; Page WD; Pilar A; Dawlaty J; Cronin SB
    Faraday Discuss; 2019 May; 214(0):325-339. PubMed ID: 31049541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures.
    Wang Y; Wang Y; Aravind I; Cai Z; Shen L; Zhang B; Wang B; Chen J; Zhao B; Shi H; Dawlaty JM; Cronin SB
    J Am Chem Soc; 2022 Mar; 144(8):3517-3526. PubMed ID: 35188777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot electron-driven photocatalytic water splitting.
    Hou B; Shen L; Shi H; Kapadia R; Cronin SB
    Phys Chem Chem Phys; 2017 Jan; 19(4):2877-2881. PubMed ID: 28074948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic hot electron transfer in anisotropic Pt-Au nanodisks boosts electrochemical reactions in the visible-NIR region.
    Chen G; Sun M; Li J; Zhu M; Lou Z; Li B
    Nanoscale; 2019 Oct; 11(40):18874-18880. PubMed ID: 31596285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.
    Nootchanat S; Ninsonti H; Baba A; Ekgasit S; Thammacharoen C; Shinbo K; Kato K; Kaneko F
    Phys Chem Chem Phys; 2014 Nov; 16(44):24484-92. PubMed ID: 25308828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Hot-Electron-Painted Au@Pt Nanoparticles as Efficient Electrocatalysts for Detection of H
    Xia C; He W; Yang XF; Gao PF; Zhen SJ; Li YF; Huang CZ
    Anal Chem; 2022 Oct; 94(39):13440-13446. PubMed ID: 36130106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu
    Wang YC; Qin C; Lou ZR; Lu YF; Zhu LP
    Nanotechnology; 2019 Dec; 30(49):495407. PubMed ID: 31480028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance.
    Mahmood R; Johnson MB; Hillier AC
    Anal Chem; 2019 Jul; 91(13):8350-8357. PubMed ID: 31140785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing hot carrier effects in Pt-decorated plasmonic heterostructures.
    Salmón-Gamboa JU; Romero-Gómez M; Roth DJ; Barber MJ; Wang P; Fairclough SM; Nasir ME; Krasavin AV; Dickson W; Zayats AV
    Faraday Discuss; 2019 May; 214(0):387-397. PubMed ID: 30801594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.