BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38563398)

  • 1. Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds.
    Hong TK; Do JT
    ACS Biomater Sci Eng; 2024 May; 10(5):3500-3512. PubMed ID: 38563398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decellularized Bovine Skeletal Muscle Scaffolds: Structural Characterization and Preliminary Cytocompatibility Evaluation.
    de Melo LF; Almeida GHDR; Azarias FR; Carreira ACO; Astolfi-Ferreira C; Ferreira AJP; Pereira ESBM; Pomini KT; Marques de Castro MV; Silva LMD; Maria DA; Rici REG
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
    Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N
    PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion.
    Leng X; Jiang H
    Domest Anim Endocrinol; 2019 Apr; 67():28-36. PubMed ID: 30677541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.
    Manchineella S; Thrivikraman G; Khanum KK; Ramamurthy PC; Basu B; Govindaraju T
    Adv Healthc Mater; 2016 May; 5(10):1222-32. PubMed ID: 27226037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional spherical gelatin bubble-based scaffold improves the myotube formation of H9c2 myoblasts.
    Mei C; Chao CW; Lin CW; Li ST; Wu KH; Yang KC; Yu J
    Biotechnol Bioeng; 2019 May; 116(5):1190-1200. PubMed ID: 30636318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment.
    Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S
    Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Administration of insulin to newly hatched chicks improves growth performance via impairment of MyoD gene expression and enhancement of cell proliferation in chicken myoblasts.
    Sato K; Aoki M; Kondo R; Matsushita K; Akiba Y; Kamada T
    Gen Comp Endocrinol; 2012 Feb; 175(3):457-63. PubMed ID: 22172340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells.
    Chaturvedi V; Naskar D; Kinnear BF; Grenik E; Dye DE; Grounds MD; Kundu SC; Coombe DR
    J Tissue Eng Regen Med; 2017 Nov; 11(11):3178-3192. PubMed ID: 27878977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering.
    Allan SJ; Ellis MJ; De Bank PA
    J Biomed Mater Res A; 2021 Dec; 109(12):2471-2482. PubMed ID: 34057281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro.
    Aswad H; Jalabert A; Rome S
    BMC Biotechnol; 2016 Apr; 16():32. PubMed ID: 27038912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts.
    Shimizu K; Ohsumi S; Kishida T; Mazda O; Honda H
    J Biosci Bioeng; 2020 May; 129(5):632-637. PubMed ID: 31859190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D biofabrication of skeletal muscle microtissues.
    Apsite I; Uribe JM; Posada AF; Rosenfeldt S; Salehi S; Ionov L
    Biofabrication; 2019 Dec; 12(1):015016. PubMed ID: 31600742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds.
    McClure MJ; Clark NM; Hyzy SL; Chalfant CE; Olivares-Navarrete R; Boyan BD; Schwartz Z
    Acta Biomater; 2016 Jul; 39():44-54. PubMed ID: 27142254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laminin-Coated Poly(Methyl Methacrylate) (PMMA) Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population.
    Zahari NK; Idrus RBH; Chowdhury SR
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29084180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal Muscle Constructs Engineered from Human Embryonic Stem Cell Derived Myogenic Progenitors Exhibit Enhanced Contractile Forces When Differentiated in a Medium Containing EGM-2 Supplements.
    Xu B; Zhang M; Perlingeiro RCR; Shen W
    Adv Biosyst; 2019 Dec; 3(12):e1900005. PubMed ID: 32648685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of Myoblasts in Culture: Focus on Serum and Gamma-Aminobutyric Acid.
    Sibgatullina G; Al Ebrahim R; Gilizhdinova K; Tokmakova A; Malomouzh A
    Cells Tissues Organs; 2024; 213(3):203-212. PubMed ID: 36871556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.