These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38563569)
1. ATP Concentration-Dependent Fractions of One-Head-Bound and Two-Head-Bound States of the Kinesin Motor during Its Chemomechanical Coupling Cycle. Xie P J Phys Chem Lett; 2024 Apr; 15(14):3893-3899. PubMed ID: 38563569 [TBL] [Abstract][Full Text] [Related]
2. A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle. Zaniewski TM; Gicking AM; Fricks J; Hancock WO J Biol Chem; 2020 Dec; 295(52):17889-17903. PubMed ID: 33082143 [TBL] [Abstract][Full Text] [Related]
3. A mobile kinesin-head intermediate during the ATP-waiting state. Asenjo AB; Sosa H Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5657-62. PubMed ID: 19321748 [TBL] [Abstract][Full Text] [Related]
4. A mechanochemical model of the forward/backward movement of motor protein kinesin-1. Shen B; Zhang Y J Biol Chem; 2022 Jun; 298(6):101948. PubMed ID: 35447112 [TBL] [Abstract][Full Text] [Related]
5. Effect of small molecular crowders on dynamics of kinesin molecular motors. Xie P J Theor Biol; 2024 Feb; 578():111685. PubMed ID: 38061488 [TBL] [Abstract][Full Text] [Related]
6. How kinesin waits for ATP affects the nucleotide and load dependence of the stepping kinetics. Takaki R; Mugnai ML; Goldtzvik Y; Thirumalai D Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23091-23099. PubMed ID: 31659052 [TBL] [Abstract][Full Text] [Related]
7. ATP-Concentration- and Force-Dependent Chemomechanical Coupling of Kinesin Molecular Motors. Xie P; Guo SK; Chen H J Chem Inf Model; 2019 Jan; 59(1):360-372. PubMed ID: 30500195 [TBL] [Abstract][Full Text] [Related]
8. The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Hackney DD Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18338-43. PubMed ID: 16339908 [TBL] [Abstract][Full Text] [Related]
9. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Hancock WO; Howard J Proc Natl Acad Sci U S A; 1999 Nov; 96(23):13147-52. PubMed ID: 10557288 [TBL] [Abstract][Full Text] [Related]
10. Chemomechanical cycle of kinesin differs from that of myosin. Romberg L; Vale RD Nature; 1993 Jan; 361(6408):168-70. PubMed ID: 8421522 [TBL] [Abstract][Full Text] [Related]
11. Kinesin Processivity Is Determined by a Kinetic Race from a Vulnerable One-Head-Bound State. Mickolajczyk KJ; Hancock WO Biophys J; 2017 Jun; 112(12):2615-2623. PubMed ID: 28636917 [TBL] [Abstract][Full Text] [Related]
12. Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins. Wang Q; Diehl MR; Jana B; Cheung MS; Kolomeisky AB; Onuchic JN Proc Natl Acad Sci U S A; 2017 Oct; 114(41):E8611-E8617. PubMed ID: 28973894 [TBL] [Abstract][Full Text] [Related]
13. Structural snapshots of the kinesin-2 OSM-3 along its nucleotide cycle: implications for the ATP hydrolysis mechanism. Varela PF; Chenon M; Velours C; Verhey KJ; Ménétrey J; Gigant B FEBS Open Bio; 2021 Mar; 11(3):564-577. PubMed ID: 33513284 [TBL] [Abstract][Full Text] [Related]
14. Positive charge in the K-loop of the kinesin-3 motor KIF1A regulates superprocessivity by enhancing microtubule affinity in the one-head-bound state. Zaniewski TM; Hancock WO J Biol Chem; 2023 Feb; 299(2):102818. PubMed ID: 36549649 [TBL] [Abstract][Full Text] [Related]
15. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Hackney DD Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6865-9. PubMed ID: 8041710 [TBL] [Abstract][Full Text] [Related]
16. The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding. Bodrug T; Wilson-Kubalek EM; Nithianantham S; Thompson AF; Alfieri A; Gaska I; Major J; Debs G; Inagaki S; Gutierrez P; Gheber L; McKenney RJ; Sindelar CV; Milligan R; Stumpff J; Rosenfeld SS; Forth ST; Al-Bassam J Elife; 2020 Jan; 9():. PubMed ID: 31958056 [TBL] [Abstract][Full Text] [Related]
17. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Alonso MC; Drummond DR; Kain S; Hoeng J; Amos L; Cross RA Science; 2007 Apr; 316(5821):120-3. PubMed ID: 17412962 [TBL] [Abstract][Full Text] [Related]
18. Direct observation of the binding state of the kinesin head to the microtubule. Guydosh NR; Block SM Nature; 2009 Sep; 461(7260):125-8. PubMed ID: 19693012 [TBL] [Abstract][Full Text] [Related]
19. New Insights into the Coupling between Microtubule Depolymerization and ATP Hydrolysis by Kinesin-13 Protein Kif2C. Wang W; Shen T; Guerois R; Zhang F; Kuerban H; Lv Y; Gigant B; Knossow M; Wang C J Biol Chem; 2015 Jul; 290(30):18721-31. PubMed ID: 26055718 [TBL] [Abstract][Full Text] [Related]
20. How kinesin waits between steps. Mori T; Vale RD; Tomishige M Nature; 2007 Nov; 450(7170):750-4. PubMed ID: 18004302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]