BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38563595)

  • 1. Profiling Intact Glycosphingolipids with Automated Structural Annotation and Quantitation from Human Samples with Nanoflow Liquid Chromatography Mass Spectrometry.
    Schindler RL; Oloumi A; Tena J; Alvarez MRS; Liu Y; Grijaldo S; Barboza M; Jin LW; Zivkovic AM; Lebrilla CB
    Anal Chem; 2024 Apr; 96(15):5951-5959. PubMed ID: 38563595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol.
    Farwanah H; Wirtz J; Kolter T; Raith K; Neubert RH; Sandhoff K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):2976-82. PubMed ID: 19646933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosphingolipid structural analysis and glycosphingolipidomics.
    Levery SB
    Methods Enzymol; 2005; 405():300-69. PubMed ID: 16413319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry.
    Merrill AH; Sullards MC; Allegood JC; Kelly S; Wang E
    Methods; 2005 Jun; 36(2):207-24. PubMed ID: 15894491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling-liquid chromatography-mass spectrometry.
    Wu Q; Huang Z; Wang Y; Zhang Z; Lu H
    J Chromatogr A; 2020 Jan; 1609():460436. PubMed ID: 31409489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism.
    Cahoon RE; Solis AG; Markham JE; Cahoon EB
    Methods Mol Biol; 2021; 2295():157-177. PubMed ID: 34047977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for the relative quantitation of human plasma lipidome using liquid chromatography coupled with mass spectrometry using minimal sample manipulation.
    Taylor D; Sousa B; West G; Neo Huipeng A; Lopez-Clavijo AF
    Rapid Commun Mass Spectrom; 2023 Feb; 38 Suppl 1():e9641. PubMed ID: 37882103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass Spectrometric Analysis of Bioactive Sphingolipids in Fungi.
    Singh A; Del Poeta M
    Methods Mol Biol; 2021; 2306():239-255. PubMed ID: 33954951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics.
    Sullards MC; Allegood JC; Kelly S; Wang E; Haynes CA; Park H; Chen Y; Merrill AH
    Methods Enzymol; 2007; 432():83-115. PubMed ID: 17954214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes.
    Wong M; Xu G; Park D; Barboza M; Lebrilla CB
    Sci Rep; 2018 Jul; 8(1):10993. PubMed ID: 30030471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of sphingolipids in Caenorhabditis elegans by two-dimensional multiple heart-cut liquid chromatography - mass spectrometry.
    Scholz J; Helmer PO; Nicolai MM; Bornhorst J; Hayen H
    J Chromatogr A; 2021 Oct; 1655():462481. PubMed ID: 34455370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Profiling of Immunosuppressive Glycosphingolipids and Sphingomyelins in Wild Cordyceps.
    Mi J; Han Y; Xu Y; Kou J; Li WJ; Wang JR; Jiang ZH
    J Agric Food Chem; 2018 Aug; 66(34):8991-8998. PubMed ID: 30059214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatographic Separation and Quantitation of Sphingolipids from the Central Nervous System or Any Other Biological Tissue.
    Ray SK; Dasgupta S
    Methods Mol Biol; 2024; 2761():149-157. PubMed ID: 38427236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scaled human serum sphingolipid profiling by using reversed-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: method development and application in hepatocellular carcinoma.
    Li J; Hu C; Zhao X; Dai W; Chen S; Lu X; Xu G
    J Chromatogr A; 2013 Dec; 1320():103-10. PubMed ID: 24210299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative profiling of glycerides, glycerophosphatides and sphingolipids in Chinese human milk with ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry.
    Zhao J; Liu Q; Liu Y; Qiao W; Yang K; Jiang T; Hou J; Zhou H; Zhao Y; Lin T; Li N; Chen L
    Food Chem; 2021 Jun; 346():128857. PubMed ID: 33373822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomic Characterization of Oocytes at Single-Cell Level Using Nanoflow Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry.
    Zhu P; Bu G; Hu R; Ruan X; Fu R; Zhang Z; Wan Q; Liu X; Miao Y; Chen S
    Molecules; 2023 May; 28(10):. PubMed ID: 37241942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary high-performance liquid chromatography/electrospray ion trap time-of-flight mass spectrometry using a novel nanoflow gradient generator.
    Ito S; Yoshioka S; Ogata I; Yamashita E; Nagai S; Okumoto T; Ishii K; Ito M; Kaji H; Takao K; Deguchi K
    J Chromatogr A; 2005 Oct; 1090(1-2):178-83. PubMed ID: 16196147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques.
    Ballesteros-Vivas D; Álvarez-Rivera G; Ibáñez E; Parada-Alfonso F; Cifuentes A
    J Chromatogr A; 2019 Jan; 1584():144-154. PubMed ID: 30579639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HILIC/MS quantitation of low-abundant phospholipids and sphingolipids in human plasma and serum: Dysregulation in pancreatic cancer.
    Peterka O; Maccelli A; Jirásko R; Vaňková Z; Idkowiak J; Hrstka R; Wolrab D; Holčapek M
    Anal Chim Acta; 2024 Feb; 1288():342144. PubMed ID: 38220279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of direct HPTLC-MALDI for the qualitative and quantitative profiling of neutral and acidic glycosphingolipids: the case of NEU3 overexpressing C2C12 murine myoblasts.
    Torretta E; Vasso M; Fania C; Capitanio D; Bergante S; Piccoli M; Tettamanti G; Anastasia L; Gelfi C
    Electrophoresis; 2014 May; 35(9):1319-28. PubMed ID: 24375639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.