BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38563616)

  • 1. Charge Relay Without Proton Transfer: Coupling of Two Short Hydrogen Bonds via Imidazole in Models of Catalytic Triad of Serine Protease Active Site.
    Tupikina EY; Sigalov MV; Alkhuder O; Tolstoy PM
    Chemphyschem; 2024 Jun; 25(12):e202300970. PubMed ID: 38563616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies.
    Massiah MA; Viragh C; Reddy PM; Kovach IM; Johnson J; Rosenberry TL; Mildvan AS
    Biochemistry; 2001 May; 40(19):5682-90. PubMed ID: 11341833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence of a low barrier hydrogen bond in the catalytic triad of a Serine protease.
    Agback P; Agback T
    Sci Rep; 2018 Jul; 8(1):10078. PubMed ID: 29973622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental effects on proton transfer in a strong hydrogen bond dimer: the 4-methyl-imidazole-aspartate case.
    Gómez PC; Pacios LF
    Phys Chem Chem Phys; 2005 Apr; 7(7):1374-81. PubMed ID: 19787957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemistry study of proton transport in imidazole chains.
    Kumar M; Venkatnathan A
    J Phys Chem B; 2015 Feb; 119(7):3213-22. PubMed ID: 25634681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases.
    Uritsky N; Shokhen M; Albeck A
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1680-4. PubMed ID: 26691899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a charge relay on the vibrational frequencies of carbonmonoxy iron porphine adducts: the coupling of changes in axial ligand bond strength and porphine core size.
    Franzen S
    J Am Chem Soc; 2001 Dec; 123(50):12578-89. PubMed ID: 11741422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies on electron and proton transfer in phenol-imidazole-base triads.
    Yan S; Kang S; Hayashi T; Mukamel S; Lee JY
    J Comput Chem; 2010 Jan; 31(2):393-402. PubMed ID: 19479733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The catalytic aspartate is protonated in the Michaelis complex formed between trypsin and an in vitro evolved substrate-like inhibitor: a refined mechanism of serine protease action.
    Wahlgren WY; Pál G; Kardos J; Porrogi P; Szenthe B; Patthy A; Gráf L; Katona G
    J Biol Chem; 2011 Feb; 286(5):3587-96. PubMed ID: 21097875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of atomic charges on proton transfer in strong hydrogen bonds: the case of anionic and neutral imidazole-acetate complexes.
    Pacios LF; Gómez PC; Gálvez O
    J Comput Chem; 2006 Nov; 27(14):1650-61. PubMed ID: 16900495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The charge density distribution in a model compound of the catalytic triad in serine proteases.
    Overgaard J; Schiøtt B; Larsen FK; Iversen BB
    Chemistry; 2001 Sep; 7(17):3756-67. PubMed ID: 11575777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newly identified C-H⋯O hydrogen bond in histidine.
    Steinert RM; Kasireddy C; Heikes ME; Mitchell-Koch KR
    Phys Chem Chem Phys; 2022 Aug; 24(32):19233-19251. PubMed ID: 35920386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing contacts of inhibitor locked in transition states in the catalytic triad of DENV2 type serine protease and its mutants by 1H, 19F and 15 N NMR spectroscopy.
    Agback P; Woestenenk E; Agback T
    BMC Mol Cell Biol; 2020 May; 21(1):38. PubMed ID: 32450796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad.
    Gotico P; Herrero C; Protti S; Quaranta A; Sheth S; Fallahpour R; Farran R; Halime Z; Sircoglou M; Aukauloo A; Leibl W
    Photochem Photobiol Sci; 2022 Feb; 21(2):247-259. PubMed ID: 34988933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The peptide bond rupture mechanism in the serine proteases: an
    Díaz-Cervantes E; Robles J; Solà M; Swart M
    Phys Chem Chem Phys; 2023 Mar; 25(11):8043-8049. PubMed ID: 36876585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge state of His-57-Asp-102 couple in a transition state analogue-trypsin complex: a molecular orbital study.
    Umeyama H; Hirono S; Nakagawa S
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6266-70. PubMed ID: 6093093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of imidazole in peptide cyclization by transesterification: parallels to the catalytic triads of serine proteases.
    Byler KG; Li Y; Houghten RA; Martinez-Mayorga K
    Org Biomol Chem; 2013 May; 11(18):2979-87. PubMed ID: 23529282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanethiol Binding Strengths and Deprotonation Energies in Zn(II)-Imidazole Complexes from M05-2X and MP2 Theories: Coordination Number and Geometry Influences Relevant to Zinc Enzymes.
    Linder DP; Rodgers KR
    J Phys Chem B; 2015 Sep; 119(37):12182-92. PubMed ID: 26317178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the water signal to detect invisible exchanging protons in the catalytic triad of a serine protease.
    Lauzon CB; van Zijl P; Stivers JT
    J Biomol NMR; 2011 Aug; 50(4):299-314. PubMed ID: 21809183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis.
    Scheiner S
    J Phys Chem B; 2008 Jun; 112(22):6837-46. PubMed ID: 18461994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.