BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38563616)

  • 21. NMR studies of the hydrogen bonds involving the catalytic triad of Escherichia coli thioesterase/protease I.
    Tyukhtenko SI; Litvinchuk AV; Chang CF; Leu RJ; Shaw JF; Huang TH
    FEBS Lett; 2002 Sep; 528(1-3):203-6. PubMed ID: 12297305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific base catalysis by yeast alcohol dehydrogenase I with substitutions of histidine-48 by glutamate or serine residues in the proton relay system.
    Plapp BV; Kratzer DA; Souhrada SK; Warth E; Jacobi T
    Chem Biol Interact; 2023 Sep; 382():110558. PubMed ID: 37247811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen bonding in the active site of ketosteroid isomerase: electronic inductive effects and hydrogen bond coupling.
    Hanoian P; Sigala PA; Herschlag D; Hammes-Schiffer S
    Biochemistry; 2010 Dec; 49(48):10339-48. PubMed ID: 21049962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model study of the efficiency of the Asp-His-Ser triad.
    Lankau T; Yu CH
    J Comput Chem; 2010 Jul; 31(9):1853-9. PubMed ID: 20082386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model of serine proteases charge relay system -- PCILO study.
    Banacký P; Linder B
    Biophys Chem; 1981 Jun; 13(3):223-31. PubMed ID: 7016210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-barrier hydrogen bonding in molecular complexes analogous to histidine and aspartate in the catalytic triad of serine proteases.
    Tobin JB; Whitt SA; Cassidy CS; Frey PA
    Biochemistry; 1995 May; 34(21):6919-24. PubMed ID: 7766600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Quantum chemistry analysis of the mechanism of action of proteolytic enzymes. III. Proton transport in serine proteases].
    Aleksandrov SL; Antonov VK
    Mol Biol (Mosk); 1987; 21(1):147-58. PubMed ID: 3033472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen isotope effects on the proton nuclear magnetic resonance spectrum of bovine ferricytochrome b5: axial hydrogen bonding involving the axial His-39 imidazole ligand.
    Lee KB; McLachlan SJ; La Mar GN
    Biochim Biophys Acta; 1994 Sep; 1208(1):22-30. PubMed ID: 8086435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary relationships between seryl-histidine dipeptide and modern serine proteases from the analysis based on mass spectrometry and bioinformatics.
    Liu Y; Li YB; Gao X; Yu YF; Liu XX; Ji ZL; Ma Y; Li YM; Zhao YF
    Amino Acids; 2018 Jan; 50(1):69-77. PubMed ID: 29071530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.
    Ngo PD; Mansoorabadi SO; Frey PA
    J Phys Chem B; 2016 Aug; 120(30):7353-9. PubMed ID: 27387593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between Asp, His, Ser residues within models of the active site of serine proteases. A theoretical empirical study.
    Genest M; Ptak M
    Int J Pept Protein Res; 1982 Apr; 19(4):420-31. PubMed ID: 6811469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy.
    Okar DA; Live DH; Devany MH; Lange AJ
    Biochemistry; 2000 Aug; 39(32):9754-62. PubMed ID: 10933792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breaching the conformational integrity of the catalytic triad of the serine protease plasmin: localized disruption of a side chain of His-603 strongly inhibits the amidolytic activity of human plasmin.
    Mhashilkar AM; Viswanatha T; Chibber BA; Castellino FJ
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5374-7. PubMed ID: 8506386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the role of short and strong hydrogen bonds on the mechanism of action of a model chymotrypsine active site.
    Miño G; Contreras R
    J Phys Chem A; 2009 May; 113(19):5769-72. PubMed ID: 19385633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physicochemical studies of chemosensor imidazole derivatives: DFT based ESIPT process.
    Jayabharathi J; Thanikachalam V; Jayamoorthy K
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():168-76. PubMed ID: 22257718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid quantum/classical molecular dynamics simulations of the proton transfer reactions catalyzed by ketosteroid isomerase: analysis of hydrogen bonding, conformational motions, and electrostatics.
    Chakravorty DK; Soudackov AV; Hammes-Schiffer S
    Biochemistry; 2009 Nov; 48(44):10608-19. PubMed ID: 19799395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.
    Shim JH; Wall M; Benkovic SJ; Díaz N; Suárez D; Merz KM
    J Am Chem Soc; 2001 May; 123(20):4687-96. PubMed ID: 11457277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration.
    Ekici OD; Paetzel M; Dalbey RE
    Protein Sci; 2008 Dec; 17(12):2023-37. PubMed ID: 18824507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen-15 NMR spectroscopy of the catalytic-triad histidine of a serine protease in peptide boronic acid inhibitor complexes.
    Bachovchin WW; Wong WY; Farr-Jones S; Shenvi AB; Kettner CA
    Biochemistry; 1988 Oct; 27(20):7689-97. PubMed ID: 3207700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clarification of the mechanism of acylation reaction and origin of substrate specificity of the serine-carboxyl peptidase sedolisin through QM/MM free energy simulations.
    Xu Q; Yao J; Wlodawer A; Guo H
    J Phys Chem B; 2011 Mar; 115(10):2470-6. PubMed ID: 21332137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.