These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38563742)

  • 1. Understanding the Electronic Transport of Al-Si and Al-Ge Nanojunctions by Exploiting Temperature-Dependent Bias Spectroscopy.
    Behrle R; Murphey CGE; Cahoon JF; Barth S; den Hertog MI; Weber WM; Sistani M
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19350-19358. PubMed ID: 38563742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolithic and Single-Crystalline Aluminum-Silicon Heterostructures.
    Wind L; Böckle R; Sistani M; Schweizer P; Maeder X; Michler J; Murphey CGE; Cahoon J; Weber WM
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26238-26244. PubMed ID: 35621308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Transparent Contacts to the 1D Hole Gas in Ultrascaled Ge/Si Core/Shell Nanowires.
    Sistani M; Delaforce J; Kramer RBG; Roch N; Luong MA; den Hertog MI; Robin E; Smoliner J; Yao J; Lieber CM; Naud C; Lugstein A; Buisson O
    ACS Nano; 2019 Dec; 13(12):14145-14151. PubMed ID: 31816231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications.
    Lin CY; Chen CF; Chang YM; Yang SH; Lee KC; Wu WW; Jian WB; Lin YF
    Small; 2019 Aug; 15(33):e1900865. PubMed ID: 31264786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition Dependent Electrical Transport in Si
    Wind L; Sistani M; Böckle R; Smoliner J; Vukŭsić L; Aberl J; Brehm M; Schweizer P; Maeder X; Michler J; Fournel F; Hartmann JM; Weber WM
    Small; 2022 Nov; 18(44):e2204178. PubMed ID: 36135726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic Metal-Semiconductor-Metal Heterostructures Enabling Next-Generation Germanium Nanodevices.
    Wind L; Sistani M; Song Z; Maeder X; Pohl D; Michler J; Rellinghaus B; Weber WM; Lugstein A
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12393-12399. PubMed ID: 33683092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning.
    Nakaharai S; Yamamoto M; Ueno K; Tsukagoshi K
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14732-9. PubMed ID: 27203118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Fermi-Level Pinning in GeS-Metal Nanocontacts.
    Sun Y; Jiao Z; Zandvliet HJW; Bampoulis P
    J Phys Chem C Nanomater Interfaces; 2022 Jul; 126(27):11400-11406. PubMed ID: 35865793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical nanowire heterojunction devices based on a clean Si/Ge interface.
    Chen L; Fung WY; Lu W
    Nano Lett; 2013; 13(11):5521-7. PubMed ID: 24134685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures.
    Kral S; Zeiner C; Stöger-Pollach M; Bertagnolli E; den Hertog MI; Lopez-Haro M; Robin E; El Hajraoui K; Lugstein A
    Nano Lett; 2015 Jul; 15(7):4783-7. PubMed ID: 26052733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from Schottky to Ohmic contacts in 2D Ge/GaAs heterostructures with high tunneling probability.
    Shen Y; Zhu J; Zhang Q; Zhu H; Fang Q; Yang X; Wang B
    Phys Chem Chem Phys; 2024 Mar; 26(11):8842-8849. PubMed ID: 38426259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic Axial and Radial Metal-Semiconductor Nanowire Heterostructures.
    Sistani M; Luong MA; den Hertog MI; Robin E; Spies M; Fernandez B; Yao J; Bertagnolli E; Lugstein A
    Nano Lett; 2018 Dec; 18(12):7692-7697. PubMed ID: 30427682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed.
    Hu Y; Xiang J; Liang G; Yan H; Lieber CM
    Nano Lett; 2008 Mar; 8(3):925-30. PubMed ID: 18251518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires.
    Wen CY; Reuter MC; Bruley J; Tersoff J; Kodambaka S; Stach EA; Ross FM
    Science; 2009 Nov; 326(5957):1247-50. PubMed ID: 19965471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-impurity scattering and carrier mobility in doped Ge/Si core-shell nanowires.
    Lee H; Choi HJ
    Nano Lett; 2010 Jun; 10(6):2207-10. PubMed ID: 20499894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Al-Ge-Al Nanowire Heterostructure: From Single-Hole Quantum Dot to Josephson Effect.
    Delaforce J; Sistani M; Kramer RBG; Luong MA; Roch N; Weber WM; den Hertog MI; Robin E; Naud C; Lugstein A; Buisson O
    Adv Mater; 2021 Oct; 33(39):e2101989. PubMed ID: 34365674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire.
    Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Experimental Approach to Evaluate Metal to 2D Semiconductor Interfaces in Vertical Diodes with Asymmetric Metal Contacts.
    Kim S; Shin DH; Kim YS; Lee IH; Lee CW; Seo S; Jung S
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27705-27712. PubMed ID: 34082527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.
    Li X; Grassi R; Li S; Li T; Xiong X; Low T; Wu Y
    Nano Lett; 2018 Jan; 18(1):26-31. PubMed ID: 29207233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Dependent Transport in Ultrathin Black Phosphorus Field-Effect Transistors.
    Yan X; Wang H; Sanchez Esqueda I
    Nano Lett; 2019 Jan; 19(1):482-487. PubMed ID: 30518214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.