These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38563781)

  • 1. Propulsion of zwitterionic surfactant-stabilized water-in-oil droplets by low electric fields.
    Gustavsson L; Peng B; Plamont R; Ikkala O
    Chem Commun (Camb); 2024 Apr; 60(33):4467-4470. PubMed ID: 38563781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacially-adsorbed particles enhance the self-propulsion of oil droplets in aqueous surfactant.
    Cheon SI; Silva LBC; Khair AS; Zarzar LD
    Soft Matter; 2021 Jul; 17(28):6742-6750. PubMed ID: 34223843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Study on the Demulsification Mechanism of Water-In-Oil Emulsion with SDS Surfactant under a DC Electric Field.
    Li S; Yuan S; Zhang Y; Guo H; Liu S; Wang D; Wang Y
    Langmuir; 2022 Oct; 38(41):12717-12730. PubMed ID: 36197725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electric field on coalescence of an oil-in-water emulsion stabilized by surfactant: a molecular dynamics study.
    Wang Y; Li S; Zhang Y; Zhang Z; Yuan S; Wang D
    RSC Adv; 2022 Oct; 12(47):30658-30669. PubMed ID: 36337949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interfacial structure of nano- and micron-sized oil and water droplets stabilized with SDS and Span80.
    Zdrali E; Etienne G; Smolentsev N; Amstad E; Roke S
    J Chem Phys; 2019 May; 150(20):204704. PubMed ID: 31153210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional and velocity control of active droplets using a rigid-frame.
    Yamada M; Shigemune H; Maeda S; Sawada H
    RSC Adv; 2019 Dec; 9(69):40523-40530. PubMed ID: 35542662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of surface charges of oil droplets and carbonate rocks to improve oil recovery.
    Hou J; Han M; Wang J
    Sci Rep; 2021 Jul; 11(1):14518. PubMed ID: 34267283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.
    Owoseni O; Nyankson E; Zhang Y; Adams DJ; He J; Spinu L; McPherson GL; Bose A; Gupta RB; John VT
    J Colloid Interface Sci; 2016 Feb; 463():288-98. PubMed ID: 26555959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying kinetics of water droplets stabilized by surfactant molecules or solid particles in a thin non-volatile oil layer.
    Miyazaki H; Inasawa S
    Soft Matter; 2017 Dec; 13(47):8990-8998. PubMed ID: 29160885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets.
    Wentworth CM; Castonguay AC; Moerman PG; Meredith CH; Balaj RV; Cheon SI; Zarzar LD
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202204510. PubMed ID: 35678216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic interfacial tension measurement under electric fields allows detection of charge carriers in nonpolar liquids.
    Sengupta R; Khair AS; Walker LM
    J Colloid Interface Sci; 2020 May; 567():18-27. PubMed ID: 32035390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-efficient, Rapid and continuous separation of surfactant-stabilized Oil/Water emulsions by selective under-liquid adhering emulsified droplets.
    Zhang J; Huang D; Wu G; Chen SC; Wang YZ
    J Hazard Mater; 2020 Dec; 400():123132. PubMed ID: 32563901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted and Stimulus-Responsive Delivery of Surfactant to the Oil-Water Interface for Applications in Oil Spill Remediation.
    Farinmade A; Ojo OF; Trout J; He J; John V; Blake DA; Lvov YM; Zhang D; Nguyen D; Bose A
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1840-1849. PubMed ID: 31820921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant specific ionic strength effects on membrane fouling during produced water treatment.
    Dickhout JM; Virga E; Lammertink RGH; de Vos WM
    J Colloid Interface Sci; 2019 Nov; 556():12-23. PubMed ID: 31419735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Demulsification-Flocculation Mechanism of Oil-Water Emulsion in Produced Water from Alkali/Surfactant/Polymer Flooding.
    Huang B; Li X; Zhang W; Fu C; Wang Y; Fu S
    Polymers (Basel); 2019 Feb; 11(3):. PubMed ID: 30960379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Responsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with a Conventional Zwitterionic Surfactant.
    Liu K; Jiang J; Cui Z; Binks BP
    Langmuir; 2017 Mar; 33(9):2296-2305. PubMed ID: 28191963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Voltage Surface Electrocoalescence Enabled by High-K Dielectrics and Surfactant Bilayers for Oil-Water Separation.
    Guha IF; Varanasi KK
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34812-34818. PubMed ID: 31449381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment.
    Virga E; Bos B; Biesheuvel PM; Nijmeijer A; de Vos WM
    J Colloid Interface Sci; 2020 Jul; 571():222-231. PubMed ID: 32200166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size dependent droplet interfacial tension and surfactant transport in liquid-liquid systems, with applications in shipboard oily bilgewater emulsions.
    Chen Y; Dutcher CS
    Soft Matter; 2020 Mar; 16(12):2994-3004. PubMed ID: 32125335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ability of surfactant hydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions.
    Chaiyasit W; Silvestre MP; McClements DJ; Decker EA
    J Agric Food Chem; 2000 Aug; 48(8):3077-80. PubMed ID: 10956071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.