These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38563924)

  • 21. A spin-orbital-entangled quantum liquid on a honeycomb lattice.
    Kitagawa K; Takayama T; Matsumoto Y; Kato A; Takano R; Kishimoto Y; Bette S; Dinnebier R; Jackeli G; Takagi H
    Nature; 2018 Feb; 554(7692):341-345. PubMed ID: 29446382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dirac fermions and flat bands in the ideal kagome metal FeSn.
    Kang M; Ye L; Fang S; You JS; Levitan A; Han M; Facio JI; Jozwiak C; Bostwick A; Rotenberg E; Chan MK; McDonald RD; Graf D; Kaznatcheev K; Vescovo E; Bell DC; Kaxiras E; van den Brink J; Richter M; Prasad Ghimire M; Checkelsky JG; Comin R
    Nat Mater; 2020 Feb; 19(2):163-169. PubMed ID: 31819211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fermion-induced quantum critical points.
    Li ZX; Jiang YF; Jian SK; Yao H
    Nat Commun; 2017 Aug; 8(1):314. PubMed ID: 28827582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity.
    Xi W; Zhang ZH; Gu ZC; Chen WQ
    Sci Bull (Beijing); 2021 Sep; 66(17):1731-1739. PubMed ID: 36654380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entanglement signatures of emergent Dirac fermions: Kagome spin liquid and quantum criticality.
    Zhu W; Chen X; He YC; Witczak-Krempa W
    Sci Adv; 2018 Nov; 4(11):eaat5535. PubMed ID: 30511016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum phase transition in a non-Hermitian
    Liu YG; Xu L; Li Z
    J Phys Condens Matter; 2021 Jun; 33(29):. PubMed ID: 33984851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interacting chiral electrons at the 2D Dirac points: a review.
    Hirata M; Kobayashi A; Berthier C; Kanoda K
    Rep Prog Phys; 2021 Mar; 84(3):. PubMed ID: 33059346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer learning from Hermitian to non-Hermitian quantum many-body physics.
    Sayyad S; Lado JL
    J Phys Condens Matter; 2024 Feb; 36(18):. PubMed ID: 38277690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PT-symmetric, non-Hermitian quantum many-body physics-a methodological perspective.
    Meden V; Grunwald L; Kennes DM
    Rep Prog Phys; 2023 Nov; 86(12):. PubMed ID: 37871599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of Non-Hermitian Fermionic Superfluidity with a Complex-Valued Interaction.
    Yamamoto K; Nakagawa M; Adachi K; Takasan K; Ueda M; Kawakami N
    Phys Rev Lett; 2019 Sep; 123(12):123601. PubMed ID: 31633989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Universal Critical Behaviours in Non-Hermitian Phase Transitions.
    Wei BB; Jin L
    Sci Rep; 2017 Aug; 7(1):7165. PubMed ID: 28769064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emergent symmetry in quantum phase transition: From deconfined quantum critical point to gapless quantum spin liquid.
    Liu WY; Gong SS; Chen WQ; Gu ZC
    Sci Bull (Beijing); 2024 Jan; 69(2):190-196. PubMed ID: 38097475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of Non-Hermitian Topology with Nonunitary Dynamics of Solid-State Spins.
    Zhang W; Ouyang X; Huang X; Wang X; Zhang H; Yu Y; Chang X; Liu Y; Deng DL; Duan LM
    Phys Rev Lett; 2021 Aug; 127(9):090501. PubMed ID: 34506190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dirac Fermions with Competing Orders: Non-Landau Transition with Emergent Symmetry.
    Sato T; Hohenadler M; Assaad FF
    Phys Rev Lett; 2017 Nov; 119(19):197203. PubMed ID: 29219508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Itinerant quantum critical point with fermion pockets and hotspots.
    Liu ZH; Pan G; Xu XY; Sun K; Meng ZY
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16760-16767. PubMed ID: 31371512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-Hermitian Dirac Cones.
    Xue H; Wang Q; Zhang B; Chong YD
    Phys Rev Lett; 2020 Jun; 124(23):236403. PubMed ID: 32603149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice.
    Sorella S; Otsuka Y; Yunoki S
    Sci Rep; 2012; 2():992. PubMed ID: 23251778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetism and Charge Order in the Honeycomb Lattice.
    Costa NC; Seki K; Sorella S
    Phys Rev Lett; 2021 Mar; 126(10):107205. PubMed ID: 33784139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Symmetric Mass Generation in the 1+1 Dimensional Chiral Fermion 3-4-5-0 Model.
    Zeng M; Zhu Z; Wang J; You YZ
    Phys Rev Lett; 2022 May; 128(18):185301. PubMed ID: 35594085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nature of the spin liquid state of the Hubbard model on a honeycomb lattice.
    Clark BK; Abanin DA; Sondhi SL
    Phys Rev Lett; 2011 Aug; 107(8):087204. PubMed ID: 21929202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.