These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3856395)

  • 1. The effect of pulsating electromagnetic fields on condylar growth in guinea pigs.
    Gerling JA; Sinclair PM; Roa RL
    Am J Orthod; 1985 Mar; 87(3):211-23. PubMed ID: 3856395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pulsed electromagnetic fields on orthodontic tooth movement.
    Stark TM; Sinclair PM
    Am J Orthod Dentofacial Orthop; 1987 Feb; 91(2):91-104. PubMed ID: 3468800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoradiographic study of the effects of pulsed electromagnetic fields on bone and cartilage growth in juvenile rats.
    Wilmot JJ; Chiego DJ; Carlson DS; Hanks CT; Moskwa JJ
    Arch Oral Biol; 1993 Jan; 38(1):67-74. PubMed ID: 8442723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of static magnetic and pulsed electromagnetic fields on bone healing.
    Darendeliler MA; Darendeliler A; Sinclair PM
    Int J Adult Orthodon Orthognath Surg; 1997; 12(1):43-53. PubMed ID: 9456617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cartilage matrix production and chondrocyte enlargement as contributors to mandibular condylar growth in monkeys (Macaca fascicularis).
    Bosshardt-Luehrs CP; Luder HU
    Am J Orthod Dentofacial Orthop; 1991 Oct; 100(4):362-9. PubMed ID: 1927987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement.
    Darendeliler MA; Sinclair PM; Kusy RP
    Am J Orthod Dentofacial Orthop; 1995 Jun; 107(6):578-88. PubMed ID: 7771362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of condylar growth in the cat with pulsating electromagnetic currents.
    Haas DW
    Am J Orthod Dentofacial Orthop; 1995 Dec; 108(6):599-606. PubMed ID: 7503037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological and histomorphometric investigation of the condylar cartilage of juvenile pigs after anterior mandibular displacement.
    Proff P; Gedrange T; Franke R; Schubert H; Fanghänel J; Miehe B; Harzer W
    Ann Anat; 2007; 189(3):269-75. PubMed ID: 17534034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations into growth and differentiation in the cartilage of the condylar process in the domestic pig. A quantitative study of endochondral cartilage growth and cell distribution.
    Leidhold K; Krey KF; Dannhauer KH; Keller F
    J Orofac Orthop; 2004 Sep; 65(5):363-75. PubMed ID: 15378192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs.
    Fini M; Torricelli P; Giavaresi G; Aldini NN; Cavani F; Setti S; Nicolini A; Carpi A; Giardino R
    Biomed Pharmacother; 2008 Dec; 62(10):709-15. PubMed ID: 17459652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-frequency electromagnetic field exposure accelerates chondrocytic phenotype expression on chitosan substrate.
    Chang SH; Hsiao YW; Lin HY
    Orthopedics; 2011 Jan; 34(1):20. PubMed ID: 21210623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig.
    Fini M; Giavaresi G; Torricelli P; Cavani F; Setti S; Canè V; Giardino R
    J Orthop Res; 2005 Jul; 23(4):899-908. PubMed ID: 16023006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of electromagnetic fields in a spinal fusion. A rabbit model.
    Glazer PA; Heilmann MR; Lotz JC; Bradford DS
    Spine (Phila Pa 1976); 1997 Oct; 22(20):2351-6. PubMed ID: 9355215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission and scanning electron microscope studies on the mandibular condyle of the guinea pig.
    Silva DG
    Arch Oral Biol; 1971 Aug; 16(8):889-96. PubMed ID: 5284303
    [No Abstract]   [Full Text] [Related]  

  • 15. Cartilage-bone replacement in endochondral ossification of mandibular condylar heads in young beagle dogs.
    Sasaki T; Kim TW; Debari K; Nagamine H
    J Electron Microsc (Tokyo); 1996 Jun; 45(3):213-22. PubMed ID: 8765717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production.
    Lohmann CH; Schwartz Z; Liu Y; Guerkov H; Dean DD; Simon B; Boyan BD
    J Orthop Res; 2000 Jul; 18(4):637-46. PubMed ID: 11052501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of masseter activity on rat mandibular growth.
    Yonemitsu I; Muramoto T; Soma K
    Arch Oral Biol; 2007 May; 52(5):487-93. PubMed ID: 17126288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the importance of cAMP and Ca++ in mandibular condylar growth and adaptation.
    Kantomaa T; Hall BK
    Am J Orthod Dentofacial Orthop; 1991 May; 99(5):418-26. PubMed ID: 1851390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in condylar cartilage after anterior mandibular displacement in juvenile pigs.
    Gredes T; Mack H; Spassov A; Kunert-Keil C; Steele M; Proff P; Mack F; Gedrange T
    Arch Oral Biol; 2012 Jun; 57(6):594-8. PubMed ID: 22041020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of estradiol on proliferation and metabolism of rabbit mandibular condylar cartilage cells in vitro.
    Cheng P; Ma X; Xue Y; Li S; Zhang Z
    Chin Med J (Engl); 2003 Sep; 116(9):1413-7. PubMed ID: 14527378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.