BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38564134)

  • 1. Role of particle size-dependent copper bioaccumulation-mediated oxidative stress on Glycine max (L.) yield parameters with soil-applied copper oxide nanoparticles.
    Yusefi-Tanha E; Fallah S; Pokhrel LR; Rostamnejadi A
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):28905-28921. PubMed ID: 38564134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing global food insecurity: Soil-applied zinc oxide nanoparticles promote yield attributes and seed nutrient quality in Glycine max L.
    Yusefi-Tanha E; Fallah S; Pokhrel LR; Rostamnejadi A
    Sci Total Environ; 2023 Jun; 876():162762. PubMed ID: 36914126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycinemax cv. Kowsar).
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Sci Total Environ; 2020 May; 715():136994. PubMed ID: 32041054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment.
    Velicogna JR; Schwertfeger D; Jesmer A; Beer C; Kuo J; DeRosa MC; Scroggins R; Smith M; Princz J
    Ecotoxicol Environ Saf; 2021 Jul; 217():112222. PubMed ID: 33895496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root System Architecture, Copper Uptake and Tissue Distribution in Soybean (
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33050103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar).
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Sci Total Environ; 2020 Oct; 738():140240. PubMed ID: 32570083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics.
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Sci Total Environ; 2022 Aug; 835():155348. PubMed ID: 35460795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of copper oxide nanoparticles on the germination, seedling growth, and physiological responses in Brassica pekinensis L.
    Wang W; Ren Y; He J; Zhang L; Wang X; Cui Z
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):31505-31515. PubMed ID: 32495199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions.
    Nekoukhou M; Fallah S; Pokhrel LR; Abbasi-Surki A; Rostamnejadi A
    Sci Total Environ; 2023 Mar; 863():160920. PubMed ID: 36529390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility of arsenic in the growth media of rice plants (Oryza sativa subsp. japonica. 'Koshihikari') with exposure to copper oxide nanoparticles in a life-cycle greenhouse study.
    Liu J; Li J; Wolfe K; Perrotta B; Cobb GP
    Sci Total Environ; 2021 Jun; 774():145620. PubMed ID: 33609822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil.
    Samarajeewa AD; Velicogna JR; Schwertfeger DM; Princz JI; Subasinghe RM; Scroggins RP; Beaudette LA
    Sci Total Environ; 2021 Apr; 763():143037. PubMed ID: 33168240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and Molecular Response of Arabidopsis thaliana to CuO Nanoparticle (nCuO) Exposure.
    Ke M; Zhu Y; Zhang M; Gumai H; Zhang Z; Xu J; Qian H
    Bull Environ Contam Toxicol; 2017 Dec; 99(6):713-718. PubMed ID: 29098304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability and Toxicity of nano Copper Oxide to Pakchoi (Brassica Campestris L.) as Compared with bulk Copper Oxide and Ionic Copper.
    Zhang Y; Li H; Qiu Y; Liu Y
    Bull Environ Contam Toxicol; 2024 Apr; 112(4):52. PubMed ID: 38565801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains.
    Deng C; Wang Y; Navarro G; Sun Y; Cota-Ruiz K; Hernandez-Viezcas JA; Niu G; Li C; White JC; Gardea-Torresdey J
    Sci Total Environ; 2022 Mar; 810():152260. PubMed ID: 34896498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internalization and Phytotoxic Effects of CuO Nanoparticles in Arabidopsis thaliana as Revealed by Fatty Acid Profiles.
    Yuan J; He A; Huang S; Hua J; Sheng GD
    Environ Sci Technol; 2016 Oct; 50(19):10437-10447. PubMed ID: 27628069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate.
    Ogunkunle CO; Jimoh MA; Asogwa NT; Viswanathan K; Vishwakarma V; Fatoba PO
    Ecotoxicol Environ Saf; 2018 Jul; 155():86-93. PubMed ID: 29510313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of copper oxide nanoparticles on two varieties of sweetpotato plants.
    Bonilla-Bird NJ; Ye Y; Akter T; Valdes-Bracamontes C; Darrouzet-Nardi AJ; Saupe GB; Flores-Marges JP; Ma L; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Plant Physiol Biochem; 2020 Sep; 154():277-286. PubMed ID: 32580091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent biological effect of copper oxide nanoparticles exposure on cucumber (Cucumis sativus).
    Zong X; Wu D; Zhang J; Tong X; Yin Y; Sun Y; Guo H
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69517-69526. PubMed ID: 35567686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological Effects of Copper Oxide Nanoparticles and Arsenic on the Growth and Life Cycle of Rice ( Oryza sativa japonica 'Koshihikari').
    Liu J; Simms M; Song S; King RS; Cobb GP
    Environ Sci Technol; 2018 Dec; 52(23):13728-13737. PubMed ID: 30403853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica).
    Liu J; Dhungana B; Cobb GP
    Chemosphere; 2018 Sep; 206():330-337. PubMed ID: 29754057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.