These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38564203)

  • 1. Deep Learning-Based Automated Detection of Retinal Breaks and Detachments on Fundus Photography.
    Christ M; Habra O; Monnin K; Vallotton K; Sznitman R; Wolf S; Zinkernagel M; Márquez Neila P
    Transl Vis Sci Technol; 2024 Apr; 13(4):1. PubMed ID: 38564203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a deep-learning system for detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus images: a pilot study.
    Zhang C; He F; Li B; Wang H; He X; Li X; Yu W; Chen Y
    Graefes Arch Clin Exp Ophthalmol; 2021 Aug; 259(8):2225-2234. PubMed ID: 33538890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DETECTION AND LOCALIZATION OF RETINAL BREAKS IN ULTRAWIDEFIELD FUNDUS PHOTOGRAPHY USING a YOLO v3 ARCHITECTURE-BASED DEEP LEARNING MODEL.
    Oh R; Oh BL; Lee EK; Park UC; Yu HG; Yoon CK
    Retina; 2022 Oct; 42(10):1889-1896. PubMed ID: 36129265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Detection of Early Retinal Peripheral Degeneration From Ultra-Widefield Fundus Photographs of Asymptomatic Young Adult (17-19 Years) Candidates to Airforce Cadets.
    Wu T; Ju L; Fu X; Wang B; Ge Z; Liu Y
    Transl Vis Sci Technol; 2024 Feb; 13(2):1. PubMed ID: 38300623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Performance of Ultra-Widefield Fundus Imaging for Screening Retinal Lesions in Rural Locales.
    Cui T; Lin D; Yu S; Zhao X; Lin Z; Zhao L; Xu F; Yun D; Pang J; Li R; Xie L; Zhu P; Huang Y; Huang H; Hu C; Huang W; Liang X; Lin H
    JAMA Ophthalmol; 2023 Nov; 141(11):1045-1051. PubMed ID: 37856107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images.
    Li Z; Guo C; Nie D; Lin D; Zhu Y; Chen C; Zhang L; Xu F; Jin C; Zhang X; Xiao H; Zhang K; Zhao L; Yu S; Zhang G; Wang J; Lin H
    Ann Transl Med; 2019 Nov; 7(22):618. PubMed ID: 31930019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Diagnosis of Multiple Peripheral Retinal Lesions in Ultra-widefield Fundus Images Based on Deep Learning.
    Wang T; Liao G; Chen L; Zhuang Y; Zhou S; Yuan Q; Han L; Wu S; Chen K; Wang B; Mi J; Gao Y; Lin J; Zhang M
    Ophthalmol Ther; 2023 Apr; 12(2):1081-1095. PubMed ID: 36692813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning.
    Li Z; Guo C; Nie D; Lin D; Cui T; Zhu Y; Chen C; Zhao L; Zhang X; Dongye M; Wang D; Xu F; Jin C; Zhang P; Han Y; Yan P; Lin H
    Eye (Lond); 2022 Aug; 36(8):1681-1686. PubMed ID: 34345030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based classification of retinal vascular diseases using ultra-widefield colour fundus photographs.
    Abitbol E; Miere A; Excoffier JB; Mehanna CJ; Amoroso F; Kerr S; Ortala M; Souied EH
    BMJ Open Ophthalmol; 2022; 7(1):e000924. PubMed ID: 35141420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Utility of Ultra-Widefield Imaging with the Optos Optomap Compared with Indirect Ophthalmoscopy in the Setting of Non-Traumatic Rhegmatogenous Retinal Detachment.
    Kornberg DL; Klufas MA; Yannuzzi NA; Orlin A; D'Amico DJ; Kiss S
    Semin Ophthalmol; 2016; 31(5):505-12. PubMed ID: 25517655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images.
    Li Z; Guo C; Nie D; Lin D; Zhu Y; Chen C; Xiang Y; Xu F; Jin C; Zhang X; Yang Y; Zhang K; Zhao L; Zhang P; Han Y; Yun D; Wu X; Yan P; Lin H
    Transl Vis Sci Technol; 2020 Jan; 9(2):3. PubMed ID: 32518708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images.
    Antaki F; Coussa RG; Kahwati G; Hammamji K; Sebag M; Duval R
    Br J Ophthalmol; 2023 Jan; 107(1):90-95. PubMed ID: 34344669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography.
    Oh R; Lee EK; Bae K; Park UC; Yu HG; Yoon CK
    Korean J Ophthalmol; 2023 Apr; 37(2):95-104. PubMed ID: 36758539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images.
    Li Z; Guo C; Lin D; Nie D; Zhu Y; Chen C; Zhao L; Wang J; Zhang X; Dongye M; Wang D; Xu F; Jin C; Zhang P; Han Y; Yan P; Han Y; Lin H
    Br J Ophthalmol; 2021 Nov; 105(11):1548-1554. PubMed ID: 32938630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for the Detection of Multiple Fundus Diseases Using Ultra-widefield Images.
    Sun G; Wang X; Xu L; Li C; Wang W; Yi Z; Luo H; Su Y; Zheng J; Li Z; Chen Z; Zheng H; Chen C
    Ophthalmol Ther; 2023 Apr; 12(2):895-907. PubMed ID: 36565376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Model for Detecting Rhegmatogenous Retinal Detachment Using Ophthalmologic Ultrasound Images.
    Wang H; Chen X; Miao X; Tang S; Lin Y; Zhang X; Chen Y; Zhu Y
    Ophthalmologica; 2024; 247(1):8-18. PubMed ID: 38113861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-capture ultra-widefield guided swept-source optical coherence tomography in the management of rhegmatogenous retinal detachment and associated peripheral vitreoretinal pathology.
    Lee WW; Muni RH
    Br J Ophthalmol; 2023 Sep; 107(9):1356-1362. PubMed ID: 35618409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning.
    Tang YW; Ji J; Lin JW; Wang J; Wang Y; Liu Z; Hu Z; Yang JF; Ng TK; Zhang M; Pang CP; Cen LP
    Asia Pac J Ophthalmol (Phila); 2023 May-Jun 01; 12(3):284-292. PubMed ID: 36912572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Machine Learning for Predicting Diabetic Retinopathy Progression From Ultra-Widefield Retinal Images.
    Silva PS; Zhang D; Jacoba CMP; Fickweiler W; Lewis D; Leitmeyer J; Curran K; Salongcay RP; Doan D; Ashraf M; Cavallerano JD; Sun JK; Peto T; Aiello LP
    JAMA Ophthalmol; 2024 Mar; 142(3):171-177. PubMed ID: 38329765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.