These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38564639)

  • 1. Genomes of historical specimens reveal multiple invasions of LTR retrotransposons in
    Scarpa A; Pianezza R; Wierzbicki F; Kofler R
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2313866121. PubMed ID: 38564639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wake up of transposable elements following Drosophila simulans worldwide colonization.
    Vieira C; Lepetit D; Dumont S; Biémont C
    Mol Biol Evol; 1999 Sep; 16(9):1251-5. PubMed ID: 10486980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans.
    Vieira C; Biémont C
    Genetica; 2004 Mar; 120(1-3):115-23. PubMed ID: 15088652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster.
    Bergman CM; Bensasson D
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11340-5. PubMed ID: 17592135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes.
    Lerat E; Burlet N; Biémont C; Vieira C
    Gene; 2011 Mar; 473(2):100-9. PubMed ID: 21156200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century.
    Schwarz F; Wierzbicki F; Senti KA; Kofler R
    Mol Biol Evol; 2021 Apr; 38(4):1482-1497. PubMed ID: 33247725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spoink, a LTR retrotransposon, invaded D. melanogaster populations in the 1990s.
    Pianezza R; Scarpa A; Narayanan P; Signor S; Kofler R
    PLoS Genet; 2024 Mar; 20(3):e1011201. PubMed ID: 38530818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence divergence within transposable element families in the Drosophila melanogaster genome.
    Lerat E; Rizzon C; Biémont C
    Genome Res; 2003 Aug; 13(8):1889-96. PubMed ID: 12869581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome.
    Maisonhaute C; Ogereau D; Hua-Van A; Capy P
    Gene; 2007 May; 393(1-2):116-26. PubMed ID: 17382490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tempo and Mode of Transposable Element Activity in Drosophila.
    Kofler R; Nolte V; Schlötterer C
    PLoS Genet; 2015 Jul; 11(7):e1005406. PubMed ID: 26186437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside.
    Bowen NJ; McDonald JF
    Genome Res; 2001 Sep; 11(9):1527-40. PubMed ID: 11544196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The analysis of Circe, an LTR retrotransposon of Drosophila melanogaster, suggests that an insertion of non-LTR retrotransposons into LTR elements can create chimeric retroelements.
    Losada A; Abad JP; Agudo M; Villasante A
    Mol Biol Evol; 1999 Oct; 16(10):1341-6. PubMed ID: 10563015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene.
    McCollum AM; Ganko EW; Barrass PA; Rodriguez JM; McDonald JF
    BMC Evol Biol; 2002 Mar; 2():5. PubMed ID: 11914129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae.
    Tubío JM; Naveira H; Costas J
    Mol Biol Evol; 2005 Jan; 22(1):29-39. PubMed ID: 15356275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population genomics of transposable elements in Drosophila melanogaster.
    Petrov DA; Fiston-Lavier AS; Lipatov M; Lenkov K; González J
    Mol Biol Evol; 2011 May; 28(5):1633-44. PubMed ID: 21172826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific chromatin landscape determines how transposable elements shape genome evolution.
    Huang Y; Shukla H; Lee YCG
    Elife; 2022 Aug; 11():. PubMed ID: 35997258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome.
    Lipatov M; Lenkov K; Petrov DA; Bergman CM
    BMC Biol; 2005 Nov; 3():24. PubMed ID: 16283942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.
    Rizzon C; Marais G; Gouy M; Biémont C
    Genome Res; 2002 Mar; 12(3):400-7. PubMed ID: 11875027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pervasive epigenetic effects of
    Lee YCG; Karpen GH
    Elife; 2017 Jul; 6():. PubMed ID: 28695823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary history of LTR-retrotransposons among 20 Drosophila species.
    Bargues N; Lerat E
    Mob DNA; 2017; 8():7. PubMed ID: 28465726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.