These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38564784)

  • 1. Suppression of Thermally Induced Surface Traps in Colloidal Quantum Dot Solids via Ultrafast Pulsed Light.
    Lee EJ; Lee W; Yun TH; You HR; Kim HJ; Yu HN; Kim SK; Kim Y; Ahn H; Lim J; Yim C; Choi J
    Small; 2024 Apr; ():e2400380. PubMed ID: 38564784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Oxygen in Two-Step Thermal Annealing Processes for Enhancing the Performance of Colloidal Quantum Dot Solar Cells.
    Kim C; Baek SW; Kim J; Kim B; Lee C; Park JY; Lee JY
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57840-57846. PubMed ID: 33320537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells.
    Woo HK; Kang MS; Park T; Bang J; Jeon S; Lee WS; Ahn J; Cho G; Ko DK; Kim Y; Ha DH; Oh SJ
    Nanoscale; 2019 Oct; 11(37):17498-17505. PubMed ID: 31532437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell.
    Kim C; Kozakci I; Lee SY; Kim B; Kim J; Lee J; Ma BS; Oh ES; Kim TS; Lee JY
    Small; 2023 Oct; 19(41):e2302195. PubMed ID: 37300352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B; Vafaie M; Levina L; Wei M; Dong Y; Gao Y; Kung HT; Biondi M; Proppe AH; Chen B; Choi MJ; Sagar LK; Voznyy O; Kelley SO; Laquai F; Lu ZH; Hoogland S; García de Arquer FP; Sargent EH
    Nano Lett; 2020 May; 20(5):3694-3702. PubMed ID: 32227970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells.
    Liu X; Fu T; Liu J; Wang Y; Jia Y; Wang C; Li X; Zhang X; Liu Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14274-14283. PubMed ID: 35289178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.
    Aqoma H; Al Mubarok M; Hadmojo WT; Lee EH; Kim TW; Ahn TK; Oh SH; Jang SY
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28266746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of water on colloidal quantum dot solar cells.
    Shi G; Wang H; Zhang Y; Cheng C; Zhai T; Chen B; Liu X; Jono R; Mao X; Liu Y; Zhang X; Ling X; Zhang Y; Meng X; Chen Y; Duhm S; Zhang L; Li T; Wang L; Xiong S; Sagawa T; Kubo T; Segawa H; Shen Q; Liu Z; Ma W
    Nat Commun; 2021 Jul; 12(1):4381. PubMed ID: 34282133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.
    Kim Y; Bicanic K; Tan H; Ouellette O; Sutherland BR; García de Arquer FP; Jo JW; Liu M; Sun B; Liu M; Hoogland S; Sargent EH
    Nano Lett; 2017 Apr; 17(4):2349-2353. PubMed ID: 28287738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors.
    Biondi M; Choi MJ; Wang Z; Wei M; Lee S; Choubisa H; Sagar LK; Sun B; Baek SW; Chen B; Todorović P; Najarian AM; Sedighian Rasouli A; Nam DH; Vafaie M; Li YC; Bertens K; Hoogland S; Voznyy O; García de Arquer FP; Sargent EH
    Adv Mater; 2021 Aug; 33(33):e2101056. PubMed ID: 34245178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13.
    Xue J; Wang R; Chen L; Nuryyeva S; Han TH; Huang T; Tan S; Zhu J; Wang M; Wang ZK; Zhang C; Lee JW; Yang Y
    Adv Mater; 2019 Sep; 31(37):e1900111. PubMed ID: 31343086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merging Passivation in Synthesis Enabling the Lowest Open-Circuit Voltage Loss for PbS Quantum Dot Solar Cells.
    Liu Y; Wu H; Shi G; Li Y; Gao Y; Fang S; Tang H; Chen W; Ma T; Khan I; Wang K; Wang C; Li X; Shen Q; Liu Z; Ma W
    Adv Mater; 2023 Feb; 35(5):e2207293. PubMed ID: 36380715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-stable n-type colloidal quantum dot solids.
    Ning Z; Voznyy O; Pan J; Hoogland S; Adinolfi V; Xu J; Li M; Kirmani AR; Sun JP; Minor J; Kemp KW; Dong H; Rollny L; Labelle A; Carey G; Sutherland B; Hill I; Amassian A; Liu H; Tang J; Bakr OM; Sargent EH
    Nat Mater; 2014 Aug; 13(8):822-8. PubMed ID: 24907929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid passivated colloidal quantum dot solids.
    Ip AH; Thon SM; Hoogland S; Voznyy O; Zhitomirsky D; Debnath R; Levina L; Rollny LR; Carey GH; Fischer A; Kemp KW; Kramer IJ; Ning Z; Labelle AJ; Chou KW; Amassian A; Sargent EH
    Nat Nanotechnol; 2012 Sep; 7(9):577-82. PubMed ID: 22842552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids.
    Liu M; Voznyy O; Sabatini R; García de Arquer FP; Munir R; Balawi AH; Lan X; Fan F; Walters G; Kirmani AR; Hoogland S; Laquai F; Amassian A; Sargent EH
    Nat Mater; 2017 Feb; 16(2):258-263. PubMed ID: 27842072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.
    Zhitomirsky D; Voznyy O; Hoogland S; Sargent EH
    ACS Nano; 2013 Jun; 7(6):5282-90. PubMed ID: 23701285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange.
    Jo JW; Kim Y; Choi J; de Arquer FPG; Walters G; Sun B; Ouellette O; Kim J; Proppe AH; Quintero-Bermudez R; Fan J; Xu J; Tan CS; Voznyy O; Sargent EH
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28991386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level.
    Pradhan S; Di Stasio F; Bi Y; Gupta S; Christodoulou S; Stavrinadis A; Konstantatos G
    Nat Nanotechnol; 2019 Jan; 14(1):72-79. PubMed ID: 30510279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices.
    Lee S; Choi MJ; Sharma G; Biondi M; Chen B; Baek SW; Najarian AM; Vafaie M; Wicks J; Sagar LK; Hoogland S; de Arquer FPG; Voznyy O; Sargent EH
    Nat Commun; 2020 Sep; 11(1):4814. PubMed ID: 32968078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal PbS Quantum Dot Photodiode Imager with Suppressed Dark Current.
    Wang Y; Hu H; Yuan M; Xia H; Zhang X; Liu J; Yang J; Xu S; Shi Z; He J; Zhang J; Gao L; Tang J; Lan X
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58573-58582. PubMed ID: 38059485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.