These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38565027)

  • 1. Performance evaluation of deep learning based stream nitrate concentration prediction model to fill stream nitrate data gaps at low-frequency nitrate monitoring basins.
    Saha G; Shen C; Duncan J; Cibin R
    J Environ Manage; 2024 Apr; 357():120721. PubMed ID: 38565027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds.
    Saha GK; Rahmani F; Shen C; Li L; Cibin R
    Sci Total Environ; 2023 Jun; 878():162930. PubMed ID: 36934914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iowa stream nitrate and the Gulf of Mexico.
    Jones CS; Nielsen JK; Schilling KE; Weber LJ
    PLoS One; 2018; 13(4):e0195930. PubMed ID: 29649312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation.
    Pellerin BA; Bergamaschi BA; Gilliom RJ; Crawford CG; Saraceno J; Frederick CP; Downing BD; Murphy JC
    Environ Sci Technol; 2014 Nov; 48(21):12612-9. PubMed ID: 25310505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A random forest approach to improve estimates of tributary nutrient loading.
    Isles PDF
    Water Res; 2024 Jan; 248():120876. PubMed ID: 37984040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal variability in discharge and nitrate in Iowa subsurface drains.
    Coupe RH; Thornburg JD; Smith EA; Capel PD
    Environ Monit Assess; 2020 Oct; 192(11):687. PubMed ID: 33029661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-stream nitrate retention patterns shift during droughts: Seasonal to sub-daily insights from high-frequency data-model fusion.
    Yang X; Zhang X; Graeber D; Hensley R; Jarvie H; Lorke A; Borchardt D; Li Q; Rode M
    Water Res; 2023 Sep; 243():120347. PubMed ID: 37490830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT.
    Schilling KE; Wolter CF
    Environ Manage; 2009 Oct; 44(4):671-82. PubMed ID: 19707706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soybean Area and Baseflow Driving Nitrate in Iowa's Raccoon River.
    Villarini G; Jones CS; Schilling KE
    J Environ Qual; 2016 Nov; 45(6):1949-1959. PubMed ID: 27898792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autotrophic nitrate uptake in river networks: A modeling approach using continuous high-frequency data.
    Yang X; Jomaa S; Büttner O; Rode M
    Water Res; 2019 Jun; 157():258-268. PubMed ID: 30959329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of different nitrate-N monitoring strategies on load estimation as a base for model calibration and evaluation.
    Ullrich A; Volk M
    Environ Monit Assess; 2010 Dec; 171(1-4):513-27. PubMed ID: 20069451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of statistical models for estimating daily nitrate load in Iowa.
    Ayers JR; Villarini G; Schilling K; Jones C
    Sci Total Environ; 2021 Aug; 782():146643. PubMed ID: 33838365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving nitrate load estimates in an agricultural catchment using Event Response Reconstruction.
    Jomaa S; Aboud I; Dupas R; Yang X; Rozemeijer J; Rode M
    Environ Monit Assess; 2018 May; 190(6):330. PubMed ID: 29732470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting nitrate concentrations in the Des Moines River: 1945 and 1976-2001.
    McIsaac GF; Libra RD
    J Environ Qual; 2003; 32(6):2280-9. PubMed ID: 14674552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of variation in nitrate concentration levels in the Raccoon River watershed in Iowa.
    Jayasinghe S; Miller D; Hatfield JL
    J Environ Qual; 2012; 41(5):1557-65. PubMed ID: 23099948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers.
    Di Nunno F; Race M; Granata F
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40623-40642. PubMed ID: 35083679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic regression modeling of daily nitrate-nitrogen concentrations in a large agricultural watershed.
    Feng Z; Schilling KE; Chan KS
    Environ Monit Assess; 2013 Jun; 185(6):4605-17. PubMed ID: 23054269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of continuous monitoring to assess stream nitrate flux and transformation patterns.
    Jones C; Kim SW; Schilling K
    Environ Monit Assess; 2017 Jan; 189(1):35. PubMed ID: 28013474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Nitrate Concentrations in Some Midwest United States Streams in 2013 after the 2012 Drought.
    Van Metre PC; Frey JW; Musgrove M; Nakagaki N; Qi S; Mahler BJ; Wieczorek ME; Button DT
    J Environ Qual; 2016 Sep; 45(5):1696-1704. PubMed ID: 27695770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.