These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38565621)

  • 1. Quantum transport of massless Dirac fermions through wormhole-shaped curved graphene in presence of constant axial magnetic flux.
    Naderi F; Hasanirokh K
    Sci Rep; 2024 Apr; 14(1):7763. PubMed ID: 38565621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tunable topological insulator in the spin helical Dirac transport regime.
    Hsieh D; Xia Y; Qian D; Wray L; Dil JH; Meier F; Osterwalder J; Patthey L; Checkelsky JG; Ong NP; Fedorov AV; Lin H; Bansil A; Grauer D; Hor YS; Cava RJ; Hasan MZ
    Nature; 2009 Aug; 460(7259):1101-5. PubMed ID: 19620959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massless Dirac fermions in graphene under an external periodic magnetic field.
    Liu S; Nurbawono A; Guo N; Zhang C
    J Phys Condens Matter; 2013 Oct; 25(39):395302. PubMed ID: 23999085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer Dirac fermions and topological phases in molecular graphene.
    Gomes KK; Mar W; Ko W; Guinea F; Manoharan HC
    Nature; 2012 Mar; 483(7389):306-10. PubMed ID: 22422264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Connection between Entangled Particles and Wormholes in General Relativity.
    Kain B
    Phys Rev Lett; 2023 Sep; 131(10):101001. PubMed ID: 37739379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene.
    Kim KS; Walter AL; Moreschini L; Seyller T; Horn K; Rotenberg E; Bostwick A
    Nat Mater; 2013 Oct; 12(10):887-92. PubMed ID: 23892785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state.
    Atanasov V; Saxena A
    J Phys Condens Matter; 2011 May; 23(17):175301. PubMed ID: 21474883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields.
    Serrano Orozco FA; Avalos Ochoa JG; Rivas XC; Cuevas Figueroa JL; Carrada HMM
    Heliyon; 2019 Aug; 5(8):e02224. PubMed ID: 31440591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)
    Kobayashi A; Katayama S; Suzumura Y
    Sci Technol Adv Mater; 2009 Apr; 10(2):024309. PubMed ID: 27877282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of the fractional quantum Hall effect in graphene.
    Bolotin KI; Ghahari F; Shulman MD; Stormer HL; Kim P
    Nature; 2009 Nov; 462(7270):196-9. PubMed ID: 19881489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions.
    Masuda H; Sakai H; Tokunaga M; Yamasaki Y; Miyake A; Shiogai J; Nakamura S; Awaji S; Tsukazaki A; Nakao H; Murakami Y; Arima TH; Tokura Y; Ishiwata S
    Sci Adv; 2016 Jan; 2(1):e1501117. PubMed ID: 27152326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semirelativity in semiconductors: a review.
    Zawadzki W
    J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy.
    Plochocka P; Faugeras C; Orlita M; Sadowski ML; Martinez G; Potemski M; Goerbig MO; Fuchs JN; Berger C; de Heer WA
    Phys Rev Lett; 2008 Feb; 100(8):087401. PubMed ID: 18352662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The classical and quantum dynamics of molecular spins on graphene.
    Cervetti C; Rettori A; Pini MG; Cornia A; Repollés A; Luis F; Dressel M; Rauschenbach S; Kern K; Burghard M; Bogani L
    Nat Mater; 2016 Feb; 15(2):164-8. PubMed ID: 26641019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of Two-Dimensional Massless Dirac Fermions, Chiral Pseudospins, and Berry's Phase in Potassium Doped Few-Layer Black Phosphorus.
    Baik SS; Kim KS; Yi Y; Choi HJ
    Nano Lett; 2015 Dec; 15(12):7788-93. PubMed ID: 26572058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interacting chiral electrons at the 2D Dirac points: a review.
    Hirata M; Kobayashi A; Berthier C; Kanoda K
    Rep Prog Phys; 2021 Mar; 84(3):. PubMed ID: 33059346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of Klein reflection by magnetic barriers in bilayer graphene.
    Agrawal Garg N; Grover S; Ghosh S; Sharma M
    J Phys Condens Matter; 2012 May; 24(17):175003. PubMed ID: 22481035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of single-spin Dirac fermions at the graphene/ferromagnet interface.
    Usachov D; Fedorov A; Otrokov MM; Chikina A; Vilkov O; Petukhov A; Rybkin AG; Koroteev YM; Chulkov EV; Adamchuk VK; Grüneis A; Laubschat C; Vyalikh DV
    Nano Lett; 2015 Apr; 15(4):2396-401. PubMed ID: 25734657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A topological Dirac insulator in a quantum spin Hall phase.
    Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ
    Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.