BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38565624)

  • 1. BioBBC: a multi-feature model that enhances the detection of biomedical entities.
    Alamro H; Gojobori T; Essack M; Gao X
    Sci Rep; 2024 Apr; 14(1):7697. PubMed ID: 38565624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioByGANS: biomedical named entity recognition by fusing contextual and syntactic features through graph attention network in node classification framework.
    Zheng X; Du H; Luo X; Tong F; Song W; Zhao D
    BMC Bioinformatics; 2022 Nov; 23(1):501. PubMed ID: 36418937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical named entity recognition based on fusion multi-features embedding.
    Li M; Yang H; Liu Y
    Technol Health Care; 2023; 31(S1):111-121. PubMed ID: 37038786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing general and specialized word embeddings for biomedical named entity recognition.
    Ramos-Vargas RE; Román-Godínez I; Torres-Ramos S
    PeerJ Comput Sci; 2021; 7():e384. PubMed ID: 33817030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization.
    Rivera-Zavala RM; Martínez P
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical named entity recognition with the combined feature attention and fully-shared multi-task learning.
    Zhang Z; Chen ALP
    BMC Bioinformatics; 2022 Nov; 23(1):458. PubMed ID: 36329384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Language model based on deep learning network for biomedical named entity recognition.
    Hou G; Jian Y; Zhao Q; Quan X; Zhang H
    Methods; 2024 Jun; 226():71-77. PubMed ID: 38641084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving biomedical named entity recognition with syntactic information.
    Tian Y; Shen W; Song Y; Xia F; He M; Li K
    BMC Bioinformatics; 2020 Nov; 21(1):539. PubMed ID: 33238875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning approach for Named Entity Recognition in Urdu language.
    Anam R; Anwar MW; Jamal MH; Bajwa UI; Diez IT; Alvarado ES; Flores ES; Ashraf I
    PLoS One; 2024; 19(3):e0300725. PubMed ID: 38547173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chinese clinical named entity recognition with radical-level feature and self-attention mechanism.
    Yin M; Mou C; Xiong K; Ren J
    J Biomed Inform; 2019 Oct; 98():103289. PubMed ID: 31541715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing entity recognition in biomedicine via instruction tuning of large language models.
    Keloth VK; Hu Y; Xie Q; Peng X; Wang Y; Zheng A; Selek M; Raja K; Wei CH; Jin Q; Lu Z; Chen Q; Xu H
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomedical named entity recognition using BERT in the machine reading comprehension framework.
    Sun C; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    J Biomed Inform; 2021 Jun; 118():103799. PubMed ID: 33965638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An imConvNet-based deep learning model for Chinese medical named entity recognition.
    Zheng Y; Han Z; Cai Y; Duan X; Sun J; Yang W; Huang H
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):303. PubMed ID: 36411432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging Semantic Type Dependencies for Clinical Named Entity Recognition.
    Le L; Zuccon G; Demartini G; Zhao G; Zhang X
    AMIA Annu Symp Proc; 2022; 2022():662-671. PubMed ID: 37128396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF.
    An Y; Xia X; Chen X; Wu FX; Wang J
    Artif Intell Med; 2022 May; 127():102282. PubMed ID: 35430042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.