These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38565816)

  • 21. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area.
    Boechat CL; Giovanella P; Amorim MB; de Sá EL; de Oliveira Camargo FA
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):3063-3073. PubMed ID: 27854061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria.
    He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y
    Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of rhizospheric culturable bacteria of Phragmites australis and Juncus effusus from polluted sites.
    Pereira SI; Pires C; Henriques I; Correia A; Magan N; Castro PM
    J Basic Microbiol; 2015 Oct; 55(10):1179-90. PubMed ID: 26059184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.
    Kocoń A; Jurga B
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4990-5000. PubMed ID: 27995509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation.
    Zeng P; Guo Z; Xiao X; Peng C; Huang B; Feng W
    Ecotoxicol Environ Saf; 2019 Mar; 169():306-315. PubMed ID: 30458397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions.
    Sun W; Xiao E; Krumins V; Häggblom MM; Dong Y; Pu Z; Li B; Wang Q; Xiao T; Li F
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-organic fertilizer facilitated phytoremediation of heavy metal(loid)s-contaminated saline soil by mediating the plant-soil-rhizomicrobiota interactions.
    Liu T; Wang Q; Li Y; Chen Y; Jia B; Zhang J; Guo W; Li FY
    Sci Total Environ; 2024 Apr; 922():171278. PubMed ID: 38417528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency.
    Wang Q; Ma L; Zhou Q; Chen B; Zhang X; Wu Y; Pan F; Huang L; Yang X; Feng Y
    Chemosphere; 2019 Nov; 234():769-776. PubMed ID: 31238273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tolerance capacities of
    Zeng P; Guo Z; Xiao X; Zhou H; Gu J; Liao B
    Int J Phytoremediation; 2022; 24(6):580-589. PubMed ID: 34369831
    [No Abstract]   [Full Text] [Related]  

  • 31. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?
    Bolan N; Kunhikrishnan A; Thangarajan R; Kumpiene J; Park J; Makino T; Kirkham MB; Scheckel K
    J Hazard Mater; 2014 Feb; 266():141-66. PubMed ID: 24394669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the relationship between metal(loid) contamination rate, physicochemical conditions, and microbial community dynamics in industrially contaminated urban soils.
    Abbaszade G; Toumi M; Farkas R; Vajna B; Krett G; Dobosy P; Szabó C; Tóth E
    Sci Total Environ; 2023 Nov; 897():166094. PubMed ID: 37582445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abundance and diversity of ammonia-oxidizing prokaryotes in the root-rhizosphere complex of Miscanthus × giganteus grown in heavy metal-contaminated soils.
    Ollivier J; Wanat N; Austruy A; Hitmi A; Joussein E; Welzl G; Munch JC; Schloter M
    Microb Ecol; 2012 Nov; 64(4):1038-46. PubMed ID: 22688859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analyses.
    Chen Y; Tian W; Shao Y; Li YJ; Lin LA; Zhang YJ; Han H; Chen ZJ
    Arch Microbiol; 2020 Jul; 202(5):1157-1171. PubMed ID: 32067064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.
    Pogrzeba M; Rusinowski S; Sitko K; Krzyżak J; Skalska A; Małkowski E; Ciszek D; Werle S; McCalmont JP; Mos M; Kalaji HM
    Environ Pollut; 2017 Jun; 225():163-174. PubMed ID: 28365513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Polyamine-producing Bacteria Regulated the Community Structure of Rhizosphere Bacteria and Reduced the Absorption of Cd in Wheat].
    Li XZ; Qin SM; Chen ZJ; Zhang J; Yao LG; Li N; Pang FH; Han H
    Huan Jing Ke Xue; 2022 Feb; 43(2):1031-1039. PubMed ID: 35075877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of Typha capensis for the remediation of soil contaminated with As, Hg, Cd and Pb.
    Wiafe S; Buamah R; Essandoh H; Darkwah L
    Environ Monit Assess; 2019 May; 191(6):346. PubMed ID: 31055657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses.
    Li Z; Wang L; Wu J; Xu Y; Wang F; Tang X; Xu J; Ok YS; Meng J; Liu X
    Environ Pollut; 2020 May; 260():114098. PubMed ID: 32041084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacillus megaterium HgT21: a Promising Metal Multiresistant Plant Growth-Promoting Bacteria for Soil Biorestoration.
    Guzmán-Moreno J; García-Ortega LF; Torres-Saucedo L; Rivas-Noriega P; Ramírez-Santoyo RM; Sánchez-Calderón L; Quiroz-Serrano IN; Vidales-Rodríguez LE
    Microbiol Spectr; 2022 Oct; 10(5):e0065622. PubMed ID: 35980185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Heavy metal tolerance of Miscanthus plants and their phytoremediation potential in abandoned mine land].
    Wu DM; Chen XY; Zeng SC
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1397-1406. PubMed ID: 29741339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.