These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38565816)

  • 41. Simultaneous immobilization of multiple heavy metal(loid)s in contaminated water and alkaline soil inoculated Fe/Mn oxidizing bacterium.
    Wu Y; Wang S; Xu J; Zang F; Long S; Wu Y; Wang Y; Nan Z
    J Environ Sci (China); 2025 Jan; 147():370-381. PubMed ID: 39003055
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochar and nano-hydroxyapatite combined remediation of soil surrounding tailings area: Multi-metal(loid)s fixation and soybean rhizosphere soil microbial improvement.
    Geng H; Wang F; Wu H; Qin Q; Ma S; Chen H; Zhou B; Yuan R; Luo S; Sun K
    J Hazard Mater; 2024 May; 469():133817. PubMed ID: 38422730
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of Plant Growth-Promoting Bacteria (PGPB) Inoculation on the Growth, Antioxidant Activity, Cu Uptake, and Bacterial Community Structure of Rape (
    Ren XM; Guo SJ; Tian W; Chen Y; Han H; Chen E; Li BL; Li YY; Chen ZJ
    Front Microbiol; 2019; 10():1455. PubMed ID: 31316489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils.
    Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L
    J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Root chemistry and microbe interactions contribute to metal(loid) tolerance of an aromatic plant - Vetiver grass.
    Li H; Rao Z; Sun G; Wang M; Yang Y; Zhang J; Li H; Pan M; Wang JJ; Chen XW
    J Hazard Mater; 2024 Jan; 461():132648. PubMed ID: 37783142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heavy metal content and microbial characteristics of soil plant system in Dabaoshan mining area, Guangdong Province.
    Qin J; Jiang X; Yan Z; Zhao H; Zhao P; Yao Y; Chen X
    PLoS One; 2023; 18(6):e0285425. PubMed ID: 37294818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system.
    Yang KM; Poolpak T; Pokethitiyook P; Kruatrachue M
    Int J Phytoremediation; 2022; 24(14):1505-1517. PubMed ID: 35266855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere.
    Hou D; Lin Z; Wang R; Ge J; Wei S; Xie R; Wang H; Wang K; Hu Y; Yang X; Lu L; Tian S
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.
    Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H
    J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils.
    Chen X; Liu X; Zhang X; Cao L; Hu X
    J Hazard Mater; 2017 Mar; 325():319-326. PubMed ID: 27951500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small structures with big impact: Multi-walled carbon nanotubes enhanced remediation efficiency in hyperaccumulator Solanum nigrum L. under cadmium and arsenic stress.
    Chen X; Wang J; Hayat K; Zhang D; Zhou P
    Chemosphere; 2021 Aug; 276():130130. PubMed ID: 33690041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor.
    Nawab J; Khan S; Aamir M; Shamshad I; Qamar Z; Din I; Huang Q
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2381-90. PubMed ID: 26411451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil.
    Ding S; Liang Y; Wang M; Hu R; Song Z; Xu X; Zheng L; Shen Z; Chen C
    J Hazard Mater; 2024 May; 469():134110. PubMed ID: 38522194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.
    Park JH; Lamb D; Paneerselvam P; Choppala G; Bolan N; Chung JW
    J Hazard Mater; 2011 Jan; 185(2-3):549-74. PubMed ID: 20974519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Heavy-Metal-Resistant PGPR Inoculants on Growth, Rhizosphere Microbiome and Remediation Potential of
    Muratova A; Golubev S; Romanova V; Sungurtseva I; Nurzhanova A
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Remediation of soils on municipal rendering plant territories using Miscanthus × giganteus.
    Grzegórska A; Czaplicka N; Antonkiewicz J; Rybarczyk P; Baran A; Dobrzyński K; Zabrocki D; Rogala A
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22305-22318. PubMed ID: 36287369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization.
    Cui JL; Zhao YP; Chan TS; Zhang LL; Tsang DCW; Li XD
    J Hazard Mater; 2020 Jan; 381():121208. PubMed ID: 31563672
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing remediation potential of heavy metal contaminated soils through synergistic application of microbial inoculants and legumes.
    Zheng K; Liu Z; Liu C; Liu J; Zhuang J
    Front Microbiol; 2023; 14():1272591. PubMed ID: 37840744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system.
    Al Souki KS; Liné C; Louvel B; Waterlot C; Douay F; Pourrut B
    Ecotoxicol Environ Saf; 2020 Aug; 199():110654. PubMed ID: 32402897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La.
    Hao L; Zhang Z; Hao B; Diao F; Zhang J; Bao Z; Guo W
    Ecotoxicol Environ Saf; 2021 Apr; 212():111996. PubMed ID: 33545409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.