BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38566218)

  • 1. Biosynthesis of fragrance 2-phenylethanol from sugars by Pseudomonas putida.
    Godoy P; Udaondo Z; Duque E; Ramos JL
    Biotechnol Biofuels Bioprod; 2024 Apr; 17(1):51. PubMed ID: 38566218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of aromatic amino acids from 2G lignocellulosic substrates.
    Godoy P; García-Franco A; Recio MI; Ramos JL; Duque E
    Microb Biotechnol; 2021 Sep; 14(5):1931-1943. PubMed ID: 34403199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas putida as a platform for the synthesis of aromatic compounds.
    Molina-Santiago C; Cordero BF; Daddaoua A; Udaondo Z; Manzano J; Valdivia M; Segura A; Ramos JL; Duque E
    Microbiology (Reading); 2016 Sep; 162(9):1535-1543. PubMed ID: 27417954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas.
    García-Franco A; Godoy P; Duque E; Ramos JL
    Microb Cell Fact; 2024 Feb; 23(1):69. PubMed ID: 38419048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 6. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli.
    Liu A; Machas M; Mhatre A; Hajinajaf N; Sarnaik A; Nichols N; Frazer S; Wang X; Varman AM; Nielsen DR
    Biotechnol Bioeng; 2024 Feb; 121(2):784-794. PubMed ID: 37926950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive investigations of 2-phenylethanol production by the filamentous fungus Annulohypoxylon stygium.
    Tong Q; Yang L; Zhang J; Zhang Y; Jiang Y; Liu X; Deng Y
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):374. PubMed ID: 38878128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of agro-industrial wastes by producing 2-phenylethanol via solid-state fermentation: Influence of substrate selection on the process.
    Martínez-Avila O; Muñoz-Torrero P; Sánchez A; Font X; Barrena R
    Waste Manag; 2021 Feb; 121():403-411. PubMed ID: 33445113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic engineering of an industrial yeast Candida glycerinogenes for efficient production of 2-phenylethanol.
    Wang Y; Zhang Z; Lu X; Zong H; Zhuge B
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10481-10491. PubMed ID: 33180170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient synthesis of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source.
    Zhan Y; Zhou M; Wang H; Chen L; Li Z; Cai D; Wen Z; Ma X; Chen S
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7507-7520. PubMed ID: 32653931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive investigations of 2-phenylethanol production by high 2-phenylethanol tolerating Meyerozyma sp. strain YLG18.
    Yan W; Zhang X; Qian X; Zhou J; Dong W; Ma J; Zhang W; Xin F; Jiang M
    Enzyme Microb Technol; 2020 Oct; 140():109629. PubMed ID: 32912689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Blumenstock E; Salcher O; Lingens F
    J Gen Microbiol; 1980 Mar; 117(1):81-7. PubMed ID: 7391822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining metabolite doping and metabolic engineering to improve 2-phenylethanol production by engineered cyanobacteria.
    Usai G; Cordara A; Re A; Polli MF; Mannino G; Bertea CM; Fino D; Pirri CF; Menin B
    Front Bioeng Biotechnol; 2022; 10():1005960. PubMed ID: 36204466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E.
    Ramos JL; Duque E; Godoy P; Segura A
    J Bacteriol; 1998 Jul; 180(13):3323-9. PubMed ID: 9642183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media.
    Chreptowicz K; Sternicka MK; Kowalska PD; Mierzejewska J
    Lett Appl Microbiol; 2018 Feb; 66(2):153-160. PubMed ID: 29224193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus.
    Li M; Lang X; Moran Cabrera M; De Keyser S; Sun X; Da Silva N; Wheeldon I
    Biotechnol Biofuels; 2021 Jan; 14(1):3. PubMed ID: 33407831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing, Uptake and Catabolism of L-Phenylalanine During 2-Phenylethanol Biosynthesis
    Dai J; Xia H; Yang C; Chen X
    Front Microbiol; 2021; 12():601963. PubMed ID: 33717002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refactoring Ehrlich Pathway for High-Yield 2-Phenylethanol Production in
    Gu Y; Ma J; Zhu Y; Xu P
    ACS Synth Biol; 2020 Mar; 9(3):623-633. PubMed ID: 32134637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.