These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38566218)

  • 21. Refactoring Ehrlich Pathway for High-Yield 2-Phenylethanol Production in
    Gu Y; Ma J; Zhu Y; Xu P
    ACS Synth Biol; 2020 Mar; 9(3):623-633. PubMed ID: 32134637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production.
    Reifenrath M; Bauer M; Oreb M; Boles E
    Metab Eng Commun; 2018 Dec; 7():e00079. PubMed ID: 30370221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of L-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas.
    Byng GS; Whitaker RJ; Jensen RA
    Arch Microbiol; 1983 Nov; 136(3):163-8. PubMed ID: 6197946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mating of 2 Laboratory Saccharomyces cerevisiae Strains Resulted in Enhanced Production of 2-Phenylethanol by Biotransformation of L-Phenylalanine.
    Mierzejewska J; Tymoszewska A; Chreptowicz K; Krol K
    J Mol Microbiol Biotechnol; 2017; 27(2):81-90. PubMed ID: 28231564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of 2-phenylethanol production by a wild-type Wickerhamomyces anomalus strain isolated from rice wine.
    Tian S; Liang X; Chen J; Zeng W; Zhou J; Du G
    Bioresour Technol; 2020 Dec; 318():124257. PubMed ID: 33096442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic physiology of aroma-producing Kluyveromyces marxianus.
    Wittmann C; Hans M; Bluemke W
    Yeast; 2002 Nov; 19(15):1351-63. PubMed ID: 12402244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Corynebacterium glutamicum for de novo production of 2-phenylethanol from lignocellulosic biomass hydrolysate.
    Zhu N; Xia W; Wang G; Song Y; Gao X; Liang J; Wang Y
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):75. PubMed ID: 37143059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global regulation of food supply by Pseudomonas putida DOT-T1E.
    Daniels C; Godoy P; Duque E; Molina-Henares MA; de la Torre J; Del Arco JM; Herrera C; Segura A; Guazzaroni ME; Ferrer M; Ramos JL
    J Bacteriol; 2010 Apr; 192(8):2169-81. PubMed ID: 20139187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in biotechnological production of 2-phenylethanol.
    Hua D; Xu P
    Biotechnol Adv; 2011; 29(6):654-60. PubMed ID: 21601630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and Identification of Non-
    Zhou R; Song Q; Xia H; Song N; Yang Q; Zhang X; Yao L; Yang S; Dai J; Chen X
    J Fungi (Basel); 2023 Aug; 9(9):. PubMed ID: 37754986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols.
    Rojas A; Duque E; Schmid A; Hurtado A; Ramos JL; Segura A
    Appl Environ Microbiol; 2004 Jun; 70(6):3637-43. PubMed ID: 15184168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose.
    Guo D; Zhang L; Kong S; Liu Z; Li X; Pan H
    J Agric Food Chem; 2018 Jun; 66(23):5886-5891. PubMed ID: 29808680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.
    Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A
    J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose.
    Amendola CR; Cordell WT; Kneucker CM; Szostkiewicz CJ; Ingraham MA; Monninger M; Wilton R; Pfleger BF; Salvachúa D; Johnson CW; Beckham GT
    Metab Eng; 2024 Jan; 81():88-99. PubMed ID: 38000549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5.
    Lu X; Wang Y; Zong H; Ji H; Zhuge B; Dong Z
    Bioengineered; 2016 Nov; 7(6):418-423. PubMed ID: 27435817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling the Multipath Biosynthesis Mechanism of 2-Phenylethanol in
    Liu J; Bai Y; Fan TP; Zheng X; Cai Y
    J Agric Food Chem; 2020 Jul; 68(29):7684-7690. PubMed ID: 32608230
    [No Abstract]   [Full Text] [Related]  

  • 37. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa.
    Calhoun DH; Pierson DL; Jensen RA
    J Bacteriol; 1973 Jan; 113(1):241-51. PubMed ID: 4631707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus.
    Kim TY; Lee SW; Oh MK
    Enzyme Microb Technol; 2014; 61-62():44-7. PubMed ID: 24910335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
    Nijkamp K; van Luijk N; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):170-7. PubMed ID: 15824922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine.
    Báez-Viveros JL; Flores N; Juárez K; Castillo-España P; Bolivar F; Gosset G
    Microb Cell Fact; 2007 Sep; 6():30. PubMed ID: 17880710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.