These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38566236)
1. SlCathB2 as a negative regulator mediates a novel regulatory pathway upon high-temperature stress response in tomato. Wen J; Zhou R; Jiang F; Chen Z; Sun M; Li H; Wu Z Physiol Plant; 2024; 176(2):e14267. PubMed ID: 38566236 [TBL] [Abstract][Full Text] [Related]
2. Cultivar-biased regulation of HSFA7 and HSFB4a govern high-temperature tolerance in tomato. Rao S; Das JR; Balyan S; Verma R; Mathur S Planta; 2022 Jan; 255(2):31. PubMed ID: 34982240 [TBL] [Abstract][Full Text] [Related]
3. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. Yu W; Wang L; Zhao R; Sheng J; Zhang S; Li R; Shen L BMC Plant Biol; 2019 Aug; 19(1):354. PubMed ID: 31412779 [TBL] [Abstract][Full Text] [Related]
4. SUMO E3 Ligase SlSIZ1 Facilitates Heat Tolerance in Tomato. Zhang S; Wang S; Lv J; Liu Z; Wang Y; Ma N; Meng Q Plant Cell Physiol; 2018 Jan; 59(1):58-71. PubMed ID: 29069432 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). Shi X; Jiang F; Wen J; Wu Z BMC Plant Biol; 2019 May; 19(1):214. PubMed ID: 31122194 [TBL] [Abstract][Full Text] [Related]
6. Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Shah K; Singh M; Rai AC Phytochemistry; 2013 Nov; 95():109-17. PubMed ID: 23962802 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Frank G; Pressman E; Ophir R; Althan L; Shaked R; Freedman M; Shen S; Firon N J Exp Bot; 2009; 60(13):3891-908. PubMed ID: 19628571 [TBL] [Abstract][Full Text] [Related]
8. The Tomato Mitogen-Activated Protein Kinase SlMPK1 Is as a Negative Regulator of the High-Temperature Stress Response. Ding H; He J; Wu Y; Wu X; Ge C; Wang Y; Zhong S; Peiter E; Liang J; Xu W Plant Physiol; 2018 Jun; 177(2):633-651. PubMed ID: 29678861 [TBL] [Abstract][Full Text] [Related]
9. WHIRLY1 Regulates HSP21.5A Expression to Promote Thermotolerance in Tomato. Zhuang K; Gao Y; Liu Z; Diao P; Sui N; Meng Q; Meng C; Kong F Plant Cell Physiol; 2020 Jan; 61(1):169-177. PubMed ID: 31596474 [TBL] [Abstract][Full Text] [Related]
10. Involvement of HSP70 in BAG9-mediated thermotolerance in Solanum lycopersicum. Xu T; Zhou H; Feng J; Guo M; Huang H; Yang P; Zhou J Plant Physiol Biochem; 2024 Feb; 207():108353. PubMed ID: 38219426 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. Xu X; Wang Q; Li W; Hu T; Wang Q; Yin Y; Liu X; He S; Zhang M; Liang Y; Zhu J; Zhan X Int J Biol Macromol; 2022 May; 206():799-811. PubMed ID: 35307463 [TBL] [Abstract][Full Text] [Related]
12. HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Mesihovic A; Ullrich S; Rosenkranz RRE; Gebhardt P; Bublak D; Eich H; Weber D; Berberich T; Scharf KD; Schleiff E; Fragkostefanakis S Cell Rep; 2022 Jan; 38(2):110224. PubMed ID: 35021091 [TBL] [Abstract][Full Text] [Related]
13. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. Wang J; Chen C; Wu C; Meng Q; Zhuang K; Ma N Plant Physiol Biochem; 2023 Nov; 204():108106. PubMed ID: 37879127 [TBL] [Abstract][Full Text] [Related]
14. Exploring the gene expression network involved in the heat stress response of a thermotolerant tomato genotype. Graci S; Cigliano RA; Barone A BMC Genomics; 2024 May; 25(1):509. PubMed ID: 38783170 [TBL] [Abstract][Full Text] [Related]
15. Nucleoredoxin 1 positively regulates heat stress tolerance by enhancing the transcription of antioxidants and heat-shock proteins in tomato. Cha JY; Ahn G; Jeong SY; Shin GI; Ali I; Ji MG; Alimzhan A; Lee SY; Kim MG; Kim WY Biochem Biophys Res Commun; 2022 Dec; 635():12-18. PubMed ID: 36252332 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of PpSnRK1α in tomato enhanced salt tolerance by regulating ABA signaling pathway and reactive oxygen metabolism. Wang WR; Liang JH; Wang GF; Sun MX; Peng FT; Xiao YS BMC Plant Biol; 2020 Mar; 20(1):128. PubMed ID: 32216751 [TBL] [Abstract][Full Text] [Related]
17. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Fragkostefanakis S; Simm S; Paul P; Bublak D; Scharf KD; Schleiff E Plant Cell Environ; 2015 Apr; 38(4):693-709. PubMed ID: 25124075 [TBL] [Abstract][Full Text] [Related]
18. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. Rao S; Gupta A; Bansal C; Sorin C; Crespi M; Mathur S Plant J; 2022 Oct; 112(1):7-26. PubMed ID: 36050841 [TBL] [Abstract][Full Text] [Related]
19. Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. El-Shershaby A; Ullrich S; Simm S; Scharf KD; Schleiff E; Fragkostefanakis S Gene; 2019 Sep; 714():143985. PubMed ID: 31330236 [TBL] [Abstract][Full Text] [Related]
20. Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Marko D; El-Shershaby A; Carriero F; Summerer S; Petrozza A; Iannacone R; Schleiff E; Fragkostefanakis S Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31284688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]