These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38566451)

  • 1. Helical Content Correlations and Hydration Structures of the Folding Ensemble of the B Domain of Protein A.
    Pereira AF; Martínez L
    J Chem Inf Model; 2024 Apr; 64(8):3350-3359. PubMed ID: 38566451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations.
    Lei H; Wu C; Wang ZX; Zhou Y; Duan Y
    J Chem Phys; 2008 Jun; 128(23):235105. PubMed ID: 18570534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness in protein folding revealed by thermodynamics calculations.
    Shao Q; Zhu W; Gao YQ
    J Phys Chem B; 2012 Nov; 116(47):13848-56. PubMed ID: 23130913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative helix and hydrogen bond stability in the B domain of protein A as revealed by integrated tempering sampling molecular dynamics simulation.
    Shao Q; Gao YQ
    J Chem Phys; 2011 Oct; 135(13):135102. PubMed ID: 21992340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies of folding of the B-domain of staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of polypeptide chains.
    Khalili M; Liwo A; Scheraga HA
    J Mol Biol; 2006 Jan; 355(3):536-47. PubMed ID: 16324712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denatured-state ensemble and the early-stage folding of the G29A mutant of the B-domain of protein A.
    Chowdhury S; Lei H; Duan Y
    J Phys Chem B; 2005 May; 109(18):9073-81. PubMed ID: 16852080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staphylococcal protein A: unfolding pathways, unfolded states, and differences between the B and E domains.
    Alonso DO; Daggett V
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):133-8. PubMed ID: 10618383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traversing the folding pathway of proteins using temperature-aided cascade molecular dynamics with conformation-dependent charges.
    Jani V; Sonavane U; Joshi R
    Eur Biophys J; 2016 Jul; 45(5):463-82. PubMed ID: 26872480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing sequence dependence of folding pathway of α-helix bundle proteins through free energy landscape analysis.
    Shao Q
    J Phys Chem B; 2014 Jun; 118(22):5891-900. PubMed ID: 24837534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles calculation of the folding free energy of a three-helix bundle protein.
    Boczko EM; Brooks CL
    Science; 1995 Jul; 269(5222):393-6. PubMed ID: 7618103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence, from simulations, of a single state with residual native structure at the thermal denaturation midpoint of a small globular protein.
    Maisuradze GG; Liwo A; Ołdziej S; Scheraga HA
    J Am Chem Soc; 2010 Jul; 132(27):9444-52. PubMed ID: 20568747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio folding of helix bundle proteins using molecular dynamics simulations.
    Jang S; Kim E; Shin S; Pak Y
    J Am Chem Soc; 2003 Dec; 125(48):14841-6. PubMed ID: 14640661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the folding kinetics of a three-helix bundle protein via a minimalist Langevin model.
    Berriz GF; Shakhnovich EI
    J Mol Biol; 2001 Jul; 310(3):673-85. PubMed ID: 11439031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A.
    García AE; Onuchic JN
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13898-903. PubMed ID: 14623983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing Biomolecular Pathways and Metastable States.
    Oliveira AB; Yang H; Whitford PC; Leite VBP
    J Chem Theory Comput; 2019 Nov; 15(11):6482-6490. PubMed ID: 31618581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folding transition-state ensemble of a four-helix bundle protein: helix propensity as a determinant and macromolecular crowding as a probe.
    Tjong H; Zhou HX
    Biophys J; 2010 May; 98(10):2273-80. PubMed ID: 20483336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Heterogeneous Nature of the Native and Unfolded States of the B Domain of Protein A Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy.
    Otosu T; Ishii K; Oikawa H; Arai M; Takahashi S; Tahara T
    J Phys Chem B; 2017 Jun; 121(22):5463-5473. PubMed ID: 28488445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of folding cooperativity in model proteins: insights from a microcanonical perspective.
    Bereau T; Deserno M; Bachmann M
    Biophys J; 2011 Jun; 100(11):2764-72. PubMed ID: 21641322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics is more important than helical propensity for the folding of the all α-helical protein Im7.
    Figueiredo AM; Whittaker SB; Knowling SE; Radford SE; Moore GR
    Protein Sci; 2013 Dec; 22(12):1722-38. PubMed ID: 24123274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis.
    Zhou Y; Karplus M
    J Mol Biol; 1999 Nov; 293(4):917-51. PubMed ID: 10543976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.