These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38566509)
1. Neural patterns associated with mixed valence feelings differ in consistency and predictability throughout the brain. Vaccaro AG; Wu H; Iyer R; Shakthivel S; Christie NC; Damasio A; Kaplan J Cereb Cortex; 2024 Apr; 34(4):. PubMed ID: 38566509 [TBL] [Abstract][Full Text] [Related]
2. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging. Kim HC; Bandettini PA; Lee JH Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076 [TBL] [Abstract][Full Text] [Related]
3. A study in affect: Predicting valence from fMRI data. Kim J; Weber CE; Gao C; Schulteis S; Wedell DH; Shinkareva SV Neuropsychologia; 2020 Jun; 143():107473. PubMed ID: 32333934 [TBL] [Abstract][Full Text] [Related]
4. The neurophysiological bases of emotion: An fMRI study of the affective circumplex using emotion-denoting words. Posner J; Russell JA; Gerber A; Gorman D; Colibazzi T; Yu S; Wang Z; Kangarlu A; Zhu H; Peterson BS Hum Brain Mapp; 2009 Mar; 30(3):883-95. PubMed ID: 18344175 [TBL] [Abstract][Full Text] [Related]
5. Mixed emotions to social situations: An fMRI investigation. Murray RJ; Kreibig SD; Pehrs C; Vuilleumier P; Gross JJ; Samson AC Neuroimage; 2023 May; 271():119973. PubMed ID: 36848968 [TBL] [Abstract][Full Text] [Related]
6. Anticipating the good and the bad: A study on the neural correlates of bivalent emotion anticipation and their malleability via attentional deployment. Kruschwitz JD; Waller L; List D; Wisniewski D; Ludwig VU; Korb F; Wolfensteller U; Goschke T; Walter H Neuroimage; 2018 Dec; 183():553-564. PubMed ID: 30145207 [TBL] [Abstract][Full Text] [Related]
7. The impact of sociality and affective valence on brain activation: A meta-analysis. Atzil S; Satpute AB; Zhang J; Parrish MH; Shablack H; MacCormack JK; Leshin J; Goel S; Brooks JA; Kang J; Xu Y; Cohen M; Lindquist KA Neuroimage; 2023 Mar; 268():119879. PubMed ID: 36642154 [TBL] [Abstract][Full Text] [Related]
8. A test of affect processing bias in response to affect regulation. Bush KA; Kilts CD PLoS One; 2022; 17(3):e0264758. PubMed ID: 35239737 [TBL] [Abstract][Full Text] [Related]
9. In search of the emotional self: an fMRI study using positive and negative emotional words. Fossati P; Hevenor SJ; Graham SJ; Grady C; Keightley ML; Craik F; Mayberg H Am J Psychiatry; 2003 Nov; 160(11):1938-45. PubMed ID: 14594739 [TBL] [Abstract][Full Text] [Related]
10. Perspective-taking is associated with increased discriminability of affective states in the ventromedial prefrontal cortex. Vaccaro AG; Heydari P; Christov-Moore L; Damasio A; Kaplan JT Soc Cogn Affect Neurosci; 2022 Dec; 17(12):1082-1090. PubMed ID: 35579186 [TBL] [Abstract][Full Text] [Related]
12. Dynamic intersubject neural synchronization reflects affective responses to sad music. Sachs ME; Habibi A; Damasio A; Kaplan JT Neuroimage; 2020 Sep; 218():116512. PubMed ID: 31901418 [TBL] [Abstract][Full Text] [Related]
13. Neural signatures of shared subjective affective engagement and disengagement during movie viewing. Nanni-Zepeda M; DeGutis J; Wu C; Rothlein D; Fan Y; Grimm S; Walter M; Esterman M; Zuberer A Hum Brain Mapp; 2024 Mar; 45(4):e26622. PubMed ID: 38488450 [TBL] [Abstract][Full Text] [Related]
14. Dynamic functional connectivity and individual differences in emotions during social stress. Tobia MJ; Hayashi K; Ballard G; Gotlib IH; Waugh CE Hum Brain Mapp; 2017 Dec; 38(12):6185-6205. PubMed ID: 28940859 [TBL] [Abstract][Full Text] [Related]
15. Brain decoding of spontaneous thought: Predictive modeling of self-relevance and valence using personal narratives. Kim HJ; Lux BK; Lee E; Finn ES; Woo CW Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2401959121. PubMed ID: 38547065 [TBL] [Abstract][Full Text] [Related]
16. Negative socio-emotional resonance in schizophrenia: a functional magnetic resonance imaging hypothesis. Fahim C; Stip E; Mancini-Marïe A; Boualem M; Malaspina D; Beauregard M Med Hypotheses; 2004; 63(3):467-75. PubMed ID: 15288371 [TBL] [Abstract][Full Text] [Related]
17. Modulating Emotional Experience Using Electrical Stimulation of the Medial-Prefrontal Cortex: A Preliminary tDCS-fMRI Study. Abend R; Sar-El R; Gonen T; Jalon I; Vaisvaser S; Bar-Haim Y; Hendler T Neuromodulation; 2019 Dec; 22(8):884-893. PubMed ID: 29741803 [TBL] [Abstract][Full Text] [Related]
18. Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect. Bush KA; Inman CS; Hamann S; Kilts CD; James GA Front Hum Neurosci; 2017; 11():459. PubMed ID: 28959198 [TBL] [Abstract][Full Text] [Related]
19. Discrete Neural Signatures of Basic Emotions. Saarimäki H; Gotsopoulos A; Jääskeläinen IP; Lampinen J; Vuilleumier P; Hari R; Sams M; Nummenmaa L Cereb Cortex; 2016 Jun; 26(6):2563-2573. PubMed ID: 25924952 [TBL] [Abstract][Full Text] [Related]
20. Segregated neural representation of distinct emotion dimensions in the prefrontal cortex-an fMRI study. Grimm S; Schmidt CF; Bermpohl F; Heinzel A; Dahlem Y; Wyss M; Hell D; Boesiger P; Boeker H; Northoff G Neuroimage; 2006 Mar; 30(1):325-40. PubMed ID: 16230029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]