BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38566823)

  • 1. Shape-memory microfluidic chips for fluid and droplet manipulation.
    Ye WQ; Zhang W; Xu ZR
    Biomicrofluidics; 2024 Mar; 18(2):021301. PubMed ID: 38566823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications.
    Tong Z; Shen C; Li Q; Yin H; Mao H
    Analyst; 2023 Mar; 148(7):1399-1421. PubMed ID: 36752059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety.
    Barman SR; Khan I; Chatterjee S; Saha S; Choi D; Lee S; Lin ZH
    J Food Drug Anal; 2020 Dec; 28(4):595-621. PubMed ID: 35696148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells.
    Chia-Hung Lee ; Chien-Chong Hong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8010-3. PubMed ID: 26738151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review.
    Abedini-Nassab R; Pouryosef Miandoab M; Şaşmaz M
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34210058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall.
    Zhang Y; Lin Y; Hong X; Di C; Xin Y; Wang X; Qi S; Liu BF; Zhang Z; Du W
    Anal Bioanal Chem; 2023 Sep; 415(22):5311-5322. PubMed ID: 37392212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned Manipulated Surface Based on Femtosecond Laser with Adjustable Wetting Speed and Directional Fluid Delivery.
    Liu S; Ma Y; Long J; Li J; Li N; Wang N; Wang M; Ruan S
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11973-11983. PubMed ID: 38394214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays.
    Fu H; Song P; Wu Q; Zhao C; Pan P; Li X; Li-Jessen NYK; Liu X
    Microsyst Nanoeng; 2019; 5():50. PubMed ID: 31636936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of microfluidic droplets by electrorheological fluid.
    Zhang M; Gong X; Wen W
    Electrophoresis; 2009 Sep; 30(18):3116-23. PubMed ID: 19722203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensuring food safety: Microfluidic-based approaches for the detection of food contaminants.
    Kasputis T; Hosmer KE; He Y; Chen J
    Anal Sci Adv; 2024 Jun; 5(5-6):e2400003. PubMed ID: 38948318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting of the blood droplet on the hydrophobic film of the EWOD chips.
    Li L; Hu H; Lin H; Ye DT
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1941-4. PubMed ID: 17282601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress.
    Yang C; Gan X; Zeng Y; Xu Z; Xu L; Hu C; Ma H; Chai B; Hu S; Chai Y
    Biosens Bioelectron; 2023 Dec; 242():115723. PubMed ID: 37832347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microfluidic technology of arterial thrombosis investigations.
    Lin J; Chen S; Zhang C; Liao J; Chen Y; Deng S; Mao Z; Zhang T; Tian N; Song Y; Zeng T
    Platelets; 2024 Dec; 35(1):2316743. PubMed ID: 38390892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a modular, integrated, miniaturized, and portable microfluidic flow control architecture for organs-on-chips applications.
    Özkayar G; Lötters JC; Tichem M; Ghatkesar MK
    Biomicrofluidics; 2022 Mar; 16(2):021302. PubMed ID: 35464136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.