These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38566892)

  • 1. Deep reinforcement learning navigation via decision transformer in autonomous driving.
    Ge L; Zhou X; Li Y; Wang Y
    Front Neurorobot; 2024; 18():1338189. PubMed ID: 38566892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Policy-Gradient and Actor-Critic Based State Representation Learning for Safe Driving of Autonomous Vehicles.
    Gupta A; Khwaja AS; Anpalagan A; Guan L; Venkatesh B
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving.
    Huang Z; Wu J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7391-7403. PubMed ID: 35081030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator.
    Gutiérrez-Moreno R; Barea R; López-Guillén E; Araluce J; Bergasa LM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement Learning With Vision-Proprioception Model for Robot Planar Pushing.
    Cong L; Liang H; Ruppel P; Shi Y; Görner M; Hendrich N; Zhang J
    Front Neurorobot; 2022; 16():829437. PubMed ID: 35308311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Reinforcement Learning for Autonomous Driving with an Auxiliary Actor Discriminator.
    Gao Q; Chang F; Yang J; Tao Y; Ma L; Su H
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function.
    Jeng SL; Chiang C
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta attention for Off-Policy Actor-Critic.
    Huang J; Huang W; Lan L; Wu D
    Neural Netw; 2023 Jun; 163():86-96. PubMed ID: 37030278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience.
    Zhang J; Ma N; Wu Z; Wang C; Yao Y
    Math Biosci Eng; 2024 May; 21(5):6077-6096. PubMed ID: 38872570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Vehicle Decision-Making and Trajectory Planning Method Based on Deep Reinforcement Learning in the Frenet Space.
    Wang J; Chu L; Zhang Y; Mao Y; Guo C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning.
    Lee H; Jeong J
    Front Neurorobot; 2023; 17():1210442. PubMed ID: 37744086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.