These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38567439)
1. Assessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials. Blette BS; Halpern SD; Li F; Harhay MO Stat Methods Med Res; 2024 May; 33(5):909-927. PubMed ID: 38567439 [TBL] [Abstract][Full Text] [Related]
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate-dependent missingness. Turner EL; Yao L; Li F; Prague M Stat Methods Med Res; 2020 May; 29(5):1338-1353. PubMed ID: 31293199 [TBL] [Abstract][Full Text] [Related]
4. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation methods for bivariate outcomes in cluster randomised trials. DiazOrdaz K; Kenward MG; Gomes M; Grieve R Stat Med; 2016 Sep; 35(20):3482-96. PubMed ID: 26990655 [TBL] [Abstract][Full Text] [Related]
6. Should multiple imputation be the method of choice for handling missing data in randomized trials? Sullivan TR; White IR; Salter AB; Ryan P; Lee KJ Stat Methods Med Res; 2018 Sep; 27(9):2610-2626. PubMed ID: 28034175 [TBL] [Abstract][Full Text] [Related]
8. Accounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity. Tong J; Li F; Harhay MO; Tong G BMC Med Res Methodol; 2023 Apr; 23(1):85. PubMed ID: 37024809 [TBL] [Abstract][Full Text] [Related]
9. Imputation strategies for missing continuous outcomes in cluster randomized trials. Taljaard M; Donner A; Klar N Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126 [TBL] [Abstract][Full Text] [Related]
10. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials. Hossain A; Diaz-Ordaz K; Bartlett JW Stat Methods Med Res; 2017 Jun; 26(3):1543-1562. PubMed ID: 27177885 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials. Gomes M; Díaz-Ordaz K; Grieve R; Kenward MG Med Decis Making; 2013 Nov; 33(8):1051-63. PubMed ID: 23913915 [TBL] [Abstract][Full Text] [Related]
12. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study. Ma J; Raina P; Beyene J; Thabane L BMC Med Res Methodol; 2013 Jan; 13():9. PubMed ID: 23343209 [TBL] [Abstract][Full Text] [Related]
13. A pattern-mixture model approach for handling missing continuous outcome data in longitudinal cluster randomized trials. Fiero MH; Hsu CH; Bell ML Stat Med; 2017 Nov; 36(26):4094-4105. PubMed ID: 28783884 [TBL] [Abstract][Full Text] [Related]
14. A comparison of imputation strategies in cluster randomized trials with missing binary outcomes. Caille A; Leyrat C; Giraudeau B Stat Methods Med Res; 2016 Dec; 25(6):2650-2669. PubMed ID: 24713160 [TBL] [Abstract][Full Text] [Related]
15. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results. Kayembe MT; Jolani S; Tan FES; van Breukelen GJP Pharm Stat; 2020 Nov; 19(6):840-860. PubMed ID: 32510791 [TBL] [Abstract][Full Text] [Related]
16. The mixed model for repeated measures for cluster randomized trials: a simulation study investigating bias and type I error with missing continuous data. Bell ML; Rabe BA Trials; 2020 Feb; 21(1):148. PubMed ID: 32033617 [TBL] [Abstract][Full Text] [Related]
17. Missing binary outcomes under covariate-dependent missingness in cluster randomised trials. Hossain A; DiazOrdaz K; Bartlett JW Stat Med; 2017 Aug; 36(19):3092-3109. PubMed ID: 28557022 [TBL] [Abstract][Full Text] [Related]
18. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data. Sullivan TR; Salter AB; Ryan P; Lee KJ Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075 [TBL] [Abstract][Full Text] [Related]
19. Intent-to-treat analysis of cluster randomized trials when clusters report unidentifiable outcome proportions. DeSantis SM; Li R; Zhang Y; Wang X; Vernon SW; Tilley BC; Koch G Clin Trials; 2020 Dec; 17(6):627-636. PubMed ID: 32838555 [TBL] [Abstract][Full Text] [Related]
20. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]