BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38567486)

  • 1. Pushing the Limits of Heat Conduction in Covalent Organic Frameworks Through High-Throughput Screening of Their Thermal Conductivity.
    Thakur S; Giri A
    Small; 2024 Apr; ():e2401702. PubMed ID: 38567486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Conductivity of Covalent-Organic Frameworks.
    Kwon J; Ma H; Giri A; Hopkins PE; Shustova NB; Tian Z
    ACS Nano; 2023 Aug; 17(16):15222-15230. PubMed ID: 37552587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases.
    Rahman MA; Dionne CJ; Giri A
    ACS Appl Mater Interfaces; 2022 May; 14(18):21687-21695. PubMed ID: 35482844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat Transfer Mechanisms and Tunable Thermal Conductivity Anisotropy in Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases.
    Giri A; Hopkins PE
    Nano Lett; 2021 Jul; 21(14):6188-6193. PubMed ID: 34264090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks.
    Giri A; Evans AM; Rahman MA; McGaughey AJH; Hopkins PE
    ACS Nano; 2022 Feb; 16(2):2843-2851. PubMed ID: 35143183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons.
    Tan F; Han S; Peng D; Wang H; Yang J; Zhao P; Ye X; Dong X; Zheng Y; Zheng N; Gong L; Liang C; Frese N; Gölzhäuser A; Qi H; Chen S; Liu W; Zheng Z
    J Am Chem Soc; 2021 Mar; 143(10):3927-3933. PubMed ID: 33629850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors.
    Li J; Hu W; Yang J
    J Am Chem Soc; 2022 Mar; 144(10):4448-4456. PubMed ID: 35230828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular Interactions Lead to Remarkably High Thermal Conductivities in Interpenetrated Two-Dimensional Porous Crystals.
    Dionne CJ; Rahman MA; Hopkins PE; Giri A
    Nano Lett; 2022 Apr; 22(7):3071-3076. PubMed ID: 35324214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conducting Wurster-type twisted covalent organic frameworks.
    Rotter JM; Guntermann R; Auth M; Mähringer A; Sperlich A; Dyakonov V; Medina DD; Bein T
    Chem Sci; 2020 Oct; 11(47):12843-12853. PubMed ID: 34094480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Modulation-Guided Growth of 2D Tellurides with Ultralow Thermal Conductivity.
    Lan H; Wang L; Li Y; Deng S; Yue Y; Zhang T; Zhang S; Zeng M; Fu L
    Small; 2022 Oct; 18(41):e2204595. PubMed ID: 36089669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction.
    Wu X; Hong YL; Xu B; Nishiyama Y; Jiang W; Zhu J; Zhang G; Kitagawa S; Horike S
    J Am Chem Soc; 2020 Aug; 142(33):14357-14364. PubMed ID: 32787252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries.
    Cui S; Miao W; Peng H; Ma G; Lei Z; Zhu L; Xu Y
    Chemistry; 2024 Feb; 30(12):e202303320. PubMed ID: 38126628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites.
    Thakur S; Giri A
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26755-26765. PubMed ID: 37235795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio.
    Thakur S; Giri A
    Mater Horiz; 2023 Nov; 10(12):5484-5491. PubMed ID: 37843868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Conductive Self-Healing Nanoporous Materials Based on Hydrogen-Bonded Organic Frameworks.
    Rahman MA; Dionne CJ; Giri A
    Nano Lett; 2022 Nov; 22(21):8534-8540. PubMed ID: 36260758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Organic Frameworks: A Promising Materials Platform for Photocatalytic CO
    Li J; Zhao D; Liu J; Liu A; Ma D
    Molecules; 2020 May; 25(10):. PubMed ID: 32455943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Sensors Based on Covalent Organic Frameworks: A Critical Review.
    Chen S; Yuan B; Liu G; Zhang D
    Front Chem; 2020; 8():601044. PubMed ID: 33330394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the thermal conductivity of two-dimensional metal halide perovskites.
    Thakur S; Dai Z; Karna P; Padture NP; Giri A
    Mater Horiz; 2022 Nov; 9(12):3087-3094. PubMed ID: 36263786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks - from 3D solids to 2D sheets.
    Li X; Yadav P; Loh KP
    Chem Soc Rev; 2020 Jul; 49(14):4835-4866. PubMed ID: 32490450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.