These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 38567529)

  • 1. Reversible Covalent Inhibition─Desired Covalent Adduct Formation by Mass Action.
    Patel D; Huma ZE; Duncan D
    ACS Chem Biol; 2024 Apr; 19(4):824-838. PubMed ID: 38567529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Atomistic Modeling of Irreversible Covalent Inhibitor Binding Kinetics.
    Yu HS; Gao C; Lupyan D; Wu Y; Kimura T; Wu C; Jacobson L; Harder E; Abel R; Wang L
    J Chem Inf Model; 2019 Sep; 59(9):3955-3967. PubMed ID: 31425654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis.
    Borucki B; Seibeck S; Heyn MP; Lamparter T
    Biochemistry; 2009 Jul; 48(27):6305-17. PubMed ID: 19496558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An update on the discovery and development of reversible covalent inhibitors.
    Faridoon ; Ng R; Zhang G; Li JJ
    Med Chem Res; 2023; 32(6):1039-1062. PubMed ID: 37305209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technologies for Direct Detection of Covalent Protein-Drug Adducts.
    Mons E; Kim RQ; Mulder MPC
    Pharmaceuticals (Basel); 2023 Apr; 16(4):. PubMed ID: 37111304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance.
    Schwartz PA; Kuzmic P; Solowiej J; Bergqvist S; Bolanos B; Almaden C; Nagata A; Ryan K; Feng J; Dalvie D; Kath JC; Xu M; Wani R; Murray BW
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):173-8. PubMed ID: 24347635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
    Shindo N; Ojida A
    Bioorg Med Chem; 2021 Oct; 47():116386. PubMed ID: 34509863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P postlabeling.
    Stiborová M; Breuer A; Aimová D; Stiborová-Rupertová M; Wiessler M; Frei E
    Int J Cancer; 2003 Dec; 107(6):885-90. PubMed ID: 14601046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent-reversible peptide-based protease inhibitors. Design, synthesis, and clinical success stories.
    Feral A; Martin AR; Desfoux A; Amblard M; Vezenkov LL
    Amino Acids; 2023 Dec; 55(12):1775-1800. PubMed ID: 37330416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the Cruzain Cysteine Protease Reversible and Irreversible Covalent Inhibition Mechanism.
    Silva JRA; Cianni L; Araujo D; Batista PHJ; de Vita D; Rosini F; Leitão A; Lameira J; Montanari CA
    J Chem Inf Model; 2020 Mar; 60(3):1666-1677. PubMed ID: 32126170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Bottom-Up Proteomic Workflow for Simultaneously Assessing the Target Specificity of Covalent Drug Candidates and Their Off-Target Reactivity to Selected Proteins.
    Yang Y; Shu YZ; Humphreys WG
    Chem Res Toxicol; 2016 Jan; 29(1):109-16. PubMed ID: 26675335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective Covalent Adduct Formation of Acyl Glucuronide Metabolite of Nonsteroidal Anti-Inflammatory Drugs with UDP-Glucuronosyltransferase.
    Kawase A; Yamashita R; Yoshizato T; Yoshikawa M; Shimada H; Iwaki M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease.
    Awoonor-Williams E; Abu-Saleh AAA
    Phys Chem Chem Phys; 2021 Mar; 23(11):6746-6757. PubMed ID: 33711090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible protein kinase inhibitors.
    Garuti L; Roberti M; Bottegoni G
    Curr Med Chem; 2011; 18(20):2981-94. PubMed ID: 21651479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.
    Serafimova IM; Pufall MA; Krishnan S; Duda K; Cohen MS; Maglathlin RL; McFarland JM; Miller RM; Frödin M; Taunton J
    Nat Chem Biol; 2012 Apr; 8(5):471-6. PubMed ID: 22466421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent binding of the anticancer drug ellipticine to DNA in V79 cells transfected with human cytochrome P450 enzymes.
    Frei E; Bieler CA; Arlt VM; Wiessler M; Stiborová M
    Biochem Pharmacol; 2002 Jul; 64(2):289-95. PubMed ID: 12123750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Covalent PROTACs: Novel and Efficient Targeted Degradation Strategy.
    Yuan M; Chu Y; Duan Y
    Front Chem; 2021; 9():691093. PubMed ID: 34291036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations.
    Mihalovits LM; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2020 Dec; 60(12):6579-6594. PubMed ID: 33295760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Enteropeptidase with Reversible Covalent Inhibitors To Achieve Metabolic Benefits.
    Sun W; Zhang X; Cummings MD; Albarazanji K; Wu J; Wang M; Alexander R; Zhu B; Zhang Y; Leonard J; Lanter J; Lenhard J
    J Pharmacol Exp Ther; 2020 Dec; 375(3):510-521. PubMed ID: 33033171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X; Minasov G; Shoichet BK
    Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.