These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38567550)

  • 1. Impact of glycan nature on structure and viscoelastic properties of glycopeptide hydrogels.
    Proksch J; Dal Colle MCS; Heinz F; Schmidt RF; Gottwald J; Delbianco M; Keller BG; Gradzielski M; Alexiev U; Koksch B
    J Pept Sci; 2024 Aug; 30(8):e3599. PubMed ID: 38567550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Chromophore Labels Shape the Structure and Dynamics of a Peptide Hydrogel.
    Heinz F; Proksch J; Schmidt RF; Gradzielski M; Koksch B; Keller BG
    Biomacromolecules; 2024 Feb; 25(2):1262-1273. PubMed ID: 38288602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically engineered block copolymers: influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly.
    Xu C; Kopecek J
    Pharm Res; 2008 Mar; 25(3):674-82. PubMed ID: 17713844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties and nanoscale structures of composite oligopeptide-polysaccharide hydrogels.
    Hyland LL; Taraban MB; Feng Y; Hammouda B; Yu YB
    Biopolymers; 2012 Mar; 97(3):177-88. PubMed ID: 21994046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.
    Schenck DM; Fiegel J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mucin-type glycopeptide structure in solution: past, present, and future.
    Barchi JJ
    Biopolymers; 2013 Oct; 99(10):713-23. PubMed ID: 23765378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions.
    Zhang L; Furst EM; Kiick KL
    J Control Release; 2006 Aug; 114(2):130-42. PubMed ID: 16890321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of mucin-like glycopeptides. Examination of peptide chain expansion and peptide-carbohydrate interactions by stochastic dynamics simulations.
    Butenhof KJ; Gerken TA
    Biochemistry; 1993 Mar; 32(10):2650-63. PubMed ID: 8448122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction.
    Marozas IA; Anseth KS; Cooper-White JJ
    Biomaterials; 2019 Dec; 223():119430. PubMed ID: 31493696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microrheology of DNA hydrogels.
    Xing Z; Caciagli A; Cao T; Stoev I; Zupkauskas M; O'Neill T; Wenzel T; Lamboll R; Liu D; Eiser E
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8137-8142. PubMed ID: 30045862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid hydrogels self-assembled from HPMA copolymers containing peptide grafts.
    Yang J; Xu C; Kopecková P; Kopecek J
    Macromol Biosci; 2006 Mar; 6(3):201-9. PubMed ID: 16514591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mucin networks: Dynamic structural assemblies controlling mucus function.
    Fass D; Thornton DJ
    Curr Opin Struct Biol; 2023 Apr; 79():102524. PubMed ID: 36753925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide.
    Haines LA; Rajagopal K; Ozbas B; Salick DA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2005 Dec; 127(48):17025-9. PubMed ID: 16316249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rational approach to form disulfide linked mucin hydrogels.
    Joyner K; Song D; Hawkins RF; Silcott RD; Duncan GA
    Soft Matter; 2019 Dec; 15(47):9632-9639. PubMed ID: 31651920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.
    Hajjarian Z; Nia HT; Ahn S; Grodzinsky AJ; Jain RK; Nadkarni SK
    Sci Rep; 2016 Dec; 6():37949. PubMed ID: 27905494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus.
    Ramachandran S; Tseng Y; Yu YB
    Biomacromolecules; 2005; 6(3):1316-21. PubMed ID: 15877347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the analysis of microrheological responses of self-assembling RADA16-I peptide hydrogel.
    Seyedkarimi MS; Mirzadeh H; Bagheri-Khoulenjani S
    J Biomed Mater Res A; 2019 Feb; 107(2):330-338. PubMed ID: 30417542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortex-induced injectable silk fibroin hydrogels.
    Yucel T; Cebe P; Kaplan DL
    Biophys J; 2009 Oct; 97(7):2044-50. PubMed ID: 19804736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins.
    Cheng L; De Leon-Rodriguez LM; Gilbert EP; Loo T; Petters L; Yang Z
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129296. PubMed ID: 38199549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.