These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Uhm H; Kang W; Ha KS; Kang C; Hohng S Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370 [TBL] [Abstract][Full Text] [Related]
6. Structural Characterization of the Cotranscriptional Folding of the Thiamin Pyrophosphate Sensing Hien EDM; Chauvier A; St-Pierre P; Lafontaine DA Biochemistry; 2024 Jul; 63(13):1608-1620. PubMed ID: 38864595 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895 [TBL] [Abstract][Full Text] [Related]
8. Pseudoknot preorganization of the preQ1 class I riboswitch. Santner T; Rieder U; Kreutz C; Micura R J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200 [TBL] [Abstract][Full Text] [Related]
10. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Ren A; Rajashankar KR; Patel DJ Nature; 2012 May; 486(7401):85-9. PubMed ID: 22678284 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics. Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581 [TBL] [Abstract][Full Text] [Related]
12. Base-Pair Opening Dynamics Study of Fluoride Riboswitch in the Lee J; Sung SE; Lee J; Kang JY; Lee JH; Choi BS Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810132 [TBL] [Abstract][Full Text] [Related]
13. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing. Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413 [TBL] [Abstract][Full Text] [Related]
14. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
15. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162 [TBL] [Abstract][Full Text] [Related]
16. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing. Szyjka CE; Strobel EJ Nat Commun; 2023 Nov; 14(1):7839. PubMed ID: 38030633 [TBL] [Abstract][Full Text] [Related]
17. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Chauvier A; Ajmera P; Yadav R; Walter NG Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782462 [TBL] [Abstract][Full Text] [Related]
18. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734 [TBL] [Abstract][Full Text] [Related]
19. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK; Batey RT PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551 [TBL] [Abstract][Full Text] [Related]
20. Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape. Hua B; Jones CP; Mitra J; Murray PJ; Rosenthal R; Ferré-D'Amaré AR; Ha T Nat Commun; 2020 Sep; 11(1):4531. PubMed ID: 32913225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]