These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38568231)

  • 1. Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly.
    Zills F; Schäfer MR; Segreto N; Kästner J; Holm C; Tovey S
    J Phys Chem B; 2024 Apr; 128(15):3662-3676. PubMed ID: 38568231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-driven investigation of the structure and dynamics of the BMIM-BF
    Zills F; Schäfer MR; Tovey S; Kästner J; Holm C
    Faraday Discuss; 2024 Oct; 253(0):129-145. PubMed ID: 39056186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations.
    Litman Y; Kapil V; Feldman YMY; Tisi D; Begušić T; Fidanyan K; Fraux G; Higer J; Kellner M; Li TE; Pós ES; Stocco E; Trenins G; Hirshberg B; Rossi M; Ceriotti M
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39140447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows.
    Gelžinytė E; Wengert S; Stenczel TK; Heenen HH; Reuter K; Csányi G; Bernstein N
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-platform hyperparameter optimization for machine learning interatomic potentials.
    Thomas du Toit DF; Deringer VL
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-learned acceleration for molecular dynamics in CASTEP.
    Stenczel TK; El-Machachi Z; Liepuoniute G; Morrow JD; Bartók AP; Probert MIJ; Csányi G; Deringer VL
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37497818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian approximation potentials: Theory, software implementation and application examples.
    Klawohn S; Darby JP; Kermode JR; Csányi G; Caro MA; Bartók AP
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37929869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative training set refinement enables reactive molecular dynamics
    Chen L; Sukuba I; Probst M; Kaiser A
    RSC Adv; 2020 Jan; 10(8):4293-4299. PubMed ID: 35495270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles.
    Fronzi M; Amos RD; Kobayashi R; Matsumura N; Watanabe K; Morizawa RK
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials.
    Plé T; Adjoua O; Lagardère L; Piquemal JP
    J Chem Phys; 2024 Jul; 161(4):. PubMed ID: 39051830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes.
    Butler PWV; Hafizi R; Day GM
    J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials.
    Hou P; Tian Y; Meng X
    Chemistry; 2024 Sep; 30(49):e202401373. PubMed ID: 38877181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in Implementing the Local Node Infrastructure for a National Federated Machine Learning Network in Radiology.
    Jacobs PP; Ehrengut C; Bucher AM; Penzkofer T; Lukas M; Kleesiek J; Denecke T
    Healthcare (Basel); 2023 Aug; 11(17):. PubMed ID: 37685411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.
    Zaverkin V; Holzmüller D; Steinwart I; Kästner J
    J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MLatom 2: An Integrative Platform for Atomistic Machine Learning.
    Dral PO; Ge F; Xue BX; Hou YF; Pinheiro M; Huang J; Barbatti M
    Top Curr Chem (Cham); 2021 Jun; 379(4):27. PubMed ID: 34101036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TorchMD: A Deep Learning Framework for Molecular Simulations.
    Doerr S; Majewski M; Pérez A; Krämer A; Clementi C; Noe F; Giorgino T; De Fabritiis G
    J Chem Theory Comput; 2021 Apr; 17(4):2355-2363. PubMed ID: 33729795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.