These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 3856839)
41. Thirty years of heme catalases structural biology. Díaz A; Loewen PC; Fita I; Carpena X Arch Biochem Biophys; 2012 Sep; 525(2):102-10. PubMed ID: 22209752 [TBL] [Abstract][Full Text] [Related]
42. Studies of glutamate dehydrogenase. The binding of NADH and NADPH to beef-liver glutamate dehydrogenase. Krause J; Bühner M; Sund H Eur J Biochem; 1974 Feb; 41(3):593-602. PubMed ID: 4150365 [No Abstract] [Full Text] [Related]
43. Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound. Okai M; Kudo N; Lee WC; Kamo M; Nagata K; Tanokura M Biochemistry; 2006 Apr; 45(16):5103-10. PubMed ID: 16618099 [TBL] [Abstract][Full Text] [Related]
44. High-resolution structure and biochemical properties of a recombinant Proteus mirabilis catalase depleted in iron. Andreoletti P; Sainz G; Jaquinod M; Gagnon J; Jouve HM Proteins; 2003 Feb; 50(2):261-71. PubMed ID: 12486720 [TBL] [Abstract][Full Text] [Related]
45. Energy-transducing nicotinamide nucleotide transhydrogenase. Nucleotide binding properties of the purified enzyme and proteolytic fragments. Yamaguchi M; Hatefi Y J Biol Chem; 1993 Aug; 268(24):17871-7. PubMed ID: 8102370 [TBL] [Abstract][Full Text] [Related]
46. Identification of the site of oxidase substrate binding in Scytalidium thermophilum catalase. Yuzugullu Karakus Y; Goc G; Balci S; Yorke BA; Trinh CH; McPherson MJ; Pearson AR Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):979-985. PubMed ID: 30289408 [TBL] [Abstract][Full Text] [Related]
47. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. Ingelman M; Bianchi V; Eklund H J Mol Biol; 1997 Apr; 268(1):147-57. PubMed ID: 9149148 [TBL] [Abstract][Full Text] [Related]
48. A nuclear magnetic resonance study of the heme environment in beef liver catalase. Lanir A; Schejter A Biochemistry; 1976 Jun; 15(12):2590-6. PubMed ID: 945745 [TBL] [Abstract][Full Text] [Related]
49. Crystallization and preliminary structural results of catalase from human erythrocytes. Maté MJ; Ortiz-Lombardía M; Marina A; Fita I Acta Crystallogr D Biol Crystallogr; 1999 May; 55(Pt 5):1066-8. PubMed ID: 10216308 [TBL] [Abstract][Full Text] [Related]
50. Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding. Ma H; Ratnam K; Penning TM Biochemistry; 2000 Jan; 39(1):102-9. PubMed ID: 10625484 [TBL] [Abstract][Full Text] [Related]
51. Binding of coenzyme and substrate and coenzyme analogues to 6-phosphogluconate dehydrogenase from sheep liver. An X-ray study at 0.6 nm resolution. Abdallah MA; Adams MJ; Archibald IG; Biellmann JF; Helliwell JR; Jenkins SE Eur J Biochem; 1979 Jul; 98(1):121-30. PubMed ID: 38116 [TBL] [Abstract][Full Text] [Related]
53. The conformer nature of the multiple forms of beef liver catalase as obtained by biochemical and small-angle X-ray scattering experiments. A model for the quaternary structure of the beef liver catalase molecule. Kuntz G; Stöckel P; Heidrich HG Hoppe Seylers Z Physiol Chem; 1978 Aug; 359(8):959-73. PubMed ID: 711156 [TBL] [Abstract][Full Text] [Related]
54. The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii. Sridhar Prasad G; Kresge N; Muhlberg AB; Shaw A; Jung YS; Burgess BK; Stout CD Protein Sci; 1998 Dec; 7(12):2541-9. PubMed ID: 9865948 [TBL] [Abstract][Full Text] [Related]
55. The chemical modification of beef liver catalase. V. Ethoxyformylation of histidine and tyrosine residues of catalase with diethylpyrocarbonate. Abe K; Anan FK J Biochem; 1976 Aug; 80(2):229-37. PubMed ID: 12142 [TBL] [Abstract][Full Text] [Related]
56. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution. Serre L; Vellieux FM; Medina M; Gomez-Moreno C; Fontecilla-Camps JC; Frey M J Mol Biol; 1996 Oct; 263(1):20-39. PubMed ID: 8890910 [TBL] [Abstract][Full Text] [Related]
57. Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 A resolution. Carpena X; Soriano M; Klotz MG; Duckworth HW; Donald LJ; Melik-Adamyan W; Fita I; Loewen PC Proteins; 2003 Feb; 50(3):423-36. PubMed ID: 12557185 [TBL] [Abstract][Full Text] [Related]
58. Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase. Chen Z; Lee WR; Chang SH Eur J Biochem; 1991 Dec; 202(2):263-7. PubMed ID: 1761031 [TBL] [Abstract][Full Text] [Related]
59. Purification and characterization of liver catalase in acatalasemic beagle dog: comparison with normal dog liver catalase. Nakamura K; Watanabe M; Sasaki Y; Ikeda T Int J Biochem Cell Biol; 2000 Jan; 32(1):89-98. PubMed ID: 10661897 [TBL] [Abstract][Full Text] [Related]
60. Structural analysis of NADPH depleted bovine liver catalase and its inhibitor complexes. Sugadev R; Ponnuswamy MN; Sekar K Int J Biochem Mol Biol; 2011; 2(1):67-77. PubMed ID: 21968615 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]