These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38568534)
1. RDDA method for characterization of photonic nanojets. Ataii MR; Amjad JM Appl Opt; 2024 Apr; 63(10):2543-2551. PubMed ID: 38568534 [TBL] [Abstract][Full Text] [Related]
2. Tailoring aberration-free photonic nanojets through the illumination of dielectric cylinders using cylindrical vector beams. Li S; Xu J; Pang T; Yao H; Cheng H; Wang J; Chi T; Zhang B; Lu Y; Liu N Opt Lett; 2024 Jul; 49(13):3682-3685. PubMed ID: 38950241 [TBL] [Abstract][Full Text] [Related]
3. Experimental verification of twin photonic nanojets from a dielectric microcylinder. Liu CY; Yeh MJ Opt Lett; 2019 Jul; 44(13):3262-3265. PubMed ID: 31259936 [TBL] [Abstract][Full Text] [Related]
4. Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. Huang Y; Zhen Z; Shen Y; Min C; Veronis G Opt Express; 2019 Jan; 27(2):1310-1325. PubMed ID: 30696199 [TBL] [Abstract][Full Text] [Related]
5. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Zhu J; Goddard LL Nanoscale Adv; 2019 Dec; 1(12):4615-4643. PubMed ID: 36133120 [TBL] [Abstract][Full Text] [Related]
6. Optofluidic Accumulation of Silica Beads on Gel-Based Three-Dimensional SERS Substrate To Enhance Sensitivity Using Multiple Photonic Nanojets. Xie CZ; Li CH; Chang YC; Chen YF ACS Appl Mater Interfaces; 2023 Jul; 15(26):31703-31710. PubMed ID: 37343114 [TBL] [Abstract][Full Text] [Related]
7. Characteristic parameters of photonic nanojets of single dielectric microspheres illuminated by focused broadband radiation. Mandal A; Tiwari P; Upputuri PK; Dantham VR Sci Rep; 2022 Jan; 12(1):173. PubMed ID: 34996911 [TBL] [Abstract][Full Text] [Related]
8. Sharper photonic nanojets generated by microspheres under higher-order radially polarized beam illumination. Xing Z; Wang X; Fu Y; Liu W; Cheng J; Zeng M Appl Opt; 2021 Dec; 60(35):10816-10824. PubMed ID: 35200841 [TBL] [Abstract][Full Text] [Related]
9. Trapping and manipulating nanoparticles in photonic nanojets. Wang H; Wu X; Shen D Opt Lett; 2016 Apr; 41(7):1652-5. PubMed ID: 27192310 [TBL] [Abstract][Full Text] [Related]
10. Direct imaging of tunable photonic nanojets from a self-assembled liquid crystal microdroplet. Matsui T; Tsukuda K Opt Lett; 2017 Nov; 42(22):4663-4666. PubMed ID: 29140337 [TBL] [Abstract][Full Text] [Related]
11. Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets. Gu G; Song J; Liang H; Zhao M; Chen Y; Qu J Sci Rep; 2017 Jul; 7(1):5635. PubMed ID: 28717186 [TBL] [Abstract][Full Text] [Related]
12. Generation of Photonic Nanojet Using Gold Film Dielectric Microdisk Structure. Zeng X; Su N; Zhang W; Ye Z; Wu P; Liu B Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109982 [TBL] [Abstract][Full Text] [Related]
13. On-fiber high-resolution photonic nanojets via high refractive index dielectrics. Aljuaid W; Riley JA; Healy N; Pacheco-Peña V Opt Express; 2022 Nov; 30(24):43678-43690. PubMed ID: 36523061 [TBL] [Abstract][Full Text] [Related]
14. Formation of high-quality photonic nanojets by decorating spider silk. Lin CB; Huang ZH; Liu CY Opt Lett; 2019 Feb; 44(3):667-670. PubMed ID: 30702706 [TBL] [Abstract][Full Text] [Related]
16. Photonic nanojets with ultralong working distance and narrowed beam waist by immersed engineered dielectric hemisphere. Liu X; Zhou H; Yang M; Xie Z; Han Q; Gou J; Wang J Opt Express; 2020 Nov; 28(23):33959-33970. PubMed ID: 33182874 [TBL] [Abstract][Full Text] [Related]
17. Numerical Study of Tunable Photonic Nanojets Generated by Biocompatible Hydrogel Core-Shell Microspheres for Surface-Enhanced Raman Scattering Applications. Wang YJ; Dai CA; Li JH Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960415 [TBL] [Abstract][Full Text] [Related]