These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38568547)

  • 1. Scanning defocusing particle tracking for the experimental characterization of flows in demanding microfluidic systems.
    Galand Q; Blinder D; Gelin P; Maes D; De Malsche W
    Appl Opt; 2024 Apr; 63(10):2636-2642. PubMed ID: 38568547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a three-dimensional (3D) particle tracking method to microfluidic particle focusing.
    Winer MH; Ahmadi A; Cheung KC
    Lab Chip; 2014 Apr; 14(8):1443-51. PubMed ID: 24572707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle tracking techniques for electrokinetic microchannel flows.
    Devasenathipathy S; Santiago JG; Takehara K
    Anal Chem; 2002 Aug; 74(15):3704-13. PubMed ID: 12175157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General defocusing particle tracking.
    Barnkob R; Kähler CJ; Rossi M
    Lab Chip; 2015 Sep; 15(17):3556-60. PubMed ID: 26201498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE).
    Choi MH; Hong L; Chamorro LP; Edwards B; Timperman AT
    Lab Chip; 2023 Dec; 24(1):20-33. PubMed ID: 37937351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A millisecond micromixer via single-bubble-based acoustic streaming.
    Ahmed D; Mao X; Shi J; Juluri BK; Huang TJ
    Lab Chip; 2009 Sep; 9(18):2738-41. PubMed ID: 19704991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evanescent wave-based particle tracking velocimetry for nanochannel flows.
    Kazoe Y; Iseki K; Mawatari K; Kitamori T
    Anal Chem; 2013 Nov; 85(22):10780-6. PubMed ID: 24143898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry.
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Nov; 205(Pt 21):3271-9. PubMed ID: 12324537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices.
    Kawamata T; Yamada M; Yasuda M; Seki M
    Electrophoresis; 2008 Apr; 29(7):1423-30. PubMed ID: 18384021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-Resolution Defocusing Nanoparticle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows.
    Kazoe Y; Shibata K; Kitamori T
    Anal Chem; 2021 Oct; 93(39):13260-13267. PubMed ID: 34559530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of Nano- and Microparticle Flows Using Thermophoresis in Branched Microfluidic Channels.
    Tsuji T; Matsumoto Y; Kugimiya R; Doi K; Kawano S
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic errors in optical-flow velocimetry for turbulent flows and flames.
    Fielding J; Long MB; Fielding G; Komiyama M
    Appl Opt; 2001 Feb; 40(6):757-64. PubMed ID: 18357055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks.
    Yanai T; Ouchi T; Yamada M; Seki M
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31242547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal image analysis of particle streaks in micro-channels for low-cost electro-hydrodynamic flow characterization.
    Mahanti P; Taylor T; Cochran D; Hayes M; Weiss N; Jones P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4026-9. PubMed ID: 22255223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convection flows driven by laser heating of a liquid layer.
    Rivière D; Selva B; Chraibi H; Delabre U; Delville JP
    Phys Rev E; 2016 Feb; 93(2):023112. PubMed ID: 26986418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.