These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38568573)

  • 1. Viewing zone enlargement method for holographic displays based on the slanted pixel arrangement on a spatial light modulator.
    Yamaguchi Y; Miura M; Higashida R; Aoshima KI; Machida K
    Appl Opt; 2024 Mar; 63(9):2204-2211. PubMed ID: 38568573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction.
    Takekawa Y; Takashima Y; Takaki Y
    Opt Express; 2020 Mar; 28(5):7392-7407. PubMed ID: 32225969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magneto-optic spatial light modulator with submicron-size magnetic pixels for wide-viewing-angle holographic displays.
    Takagi H; Nakamura K; Goto T; Lim PB; Inoue M
    Opt Lett; 2014 Jun; 39(11):3344-7. PubMed ID: 24876049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anamorphic optical transformation of an amplitude spatial light modulator to a complex spatial light modulator with square pixels [invited].
    Kim H; Hwang CY; Kim KS; Roh J; Moon W; Kim S; Lee BR; Oh S; Hahn J
    Appl Opt; 2014 Sep; 53(27):G139-46. PubMed ID: 25322122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.
    Takaki Y; Nakaoka M
    Opt Express; 2016 Aug; 24(16):18772-81. PubMed ID: 27505840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator.
    Takaki Y; Hayashi Y
    Appl Opt; 2008 Jul; 47(19):D6-11. PubMed ID: 18594580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holobricks: modular coarse integral holographic displays.
    Li J; Smithwick Q; Chu D
    Light Sci Appl; 2022 Mar; 11(1):57. PubMed ID: 35292621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viewing-zone scanning holographic display using a MEMS spatial light modulator.
    Takaki Y; Fujii K
    Opt Express; 2014 Oct; 22(20):24713-21. PubMed ID: 25322046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of a vertical effective viewing zone for an optical 360° holographic display.
    Wang J; Zhou J; Wu Y; Lei X; Zhang Y
    Opt Express; 2022 Nov; 30(24):43037-43052. PubMed ID: 36523011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hologram generation by horizontal scanning of a high-speed spatial light modulator.
    Takaki Y; Okada N
    Appl Opt; 2009 Jun; 48(17):3255-60. PubMed ID: 19516381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magneto-optical spatial light modulator driven by current-induced domain wall motion for holographic display applications.
    Aoshima KI; Funabashi N; Higashida R; Kawana M; Aso S; Shibasaki J; Yamaguchi Y; Machida K
    Opt Express; 2023 Jun; 31(13):21330-21339. PubMed ID: 37381234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binocular holographic display based on the holographic optical element.
    Qin X; Sang X; Li H; Yu C; Xiao R; Zhong C; Sun Z; Dong Y; Yan B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2316-2324. PubMed ID: 36520753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viewing-angle expansion in holographic displays implemented with a modulator having finite space-bandwidth.
    Gyu Chae B
    Opt Express; 2023 Nov; 31(23):37900-37910. PubMed ID: 38017910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone-type multi-directional viewing-zone extension of a computer-generated hologram via a shuffle interconnection.
    Kim S; Kim YJ; Kim T; Kim H
    Opt Express; 2022 May; 30(11):18684-18691. PubMed ID: 36221664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An interactive holographic projection system that uses a hand-drawn interface with a consumer CPU.
    Nishitsuji T; Kakue T; Blinder D; Shimobaba T; Ito T
    Sci Rep; 2021 Jan; 11(1):147. PubMed ID: 33420135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time interactive holographic 3D display with a 360° horizontal viewing zone.
    Sando Y; Satoh K; Barada D; Yatagai T
    Appl Opt; 2019 Dec; 58(34):G1-G5. PubMed ID: 31873478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-color holographic display with increased-viewing-angle [Invited].
    Zeng Z; Zheng H; Yu Y; Asundi AK; Valyukh S
    Appl Opt; 2017 May; 56(13):F112-F120. PubMed ID: 28463303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viewing angle enhancement for two- and three-dimensional holographic displays with random superresolution phase masks.
    Buckley E; Cable A; Lawrence N; Wilkinson T
    Appl Opt; 2006 Oct; 45(28):7334-41. PubMed ID: 16983423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of spurious image duplicates in Fourier holograms by pixel apodization of a spatial light modulator.
    Starobrat J; Fiderkiewicz S; Kołodziejczyk A; Sypek M; Beck R; Pavłov K; Słowikowski M; Kowalczyk A; Suszek J; Makowski M
    Opt Express; 2021 Nov; 29(24):40259-40273. PubMed ID: 34809371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner.
    Li J; Smithwick Q; Chu D
    Opt Express; 2018 Jun; 26(13):17459-17476. PubMed ID: 30119558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.