These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38568580)

  • 21. Cylindrical 3D printed configurable ultrasonic lens for subwavelength focusing enhancement.
    Castiñeira-Ibáñez S; Tarrazó-Serrano D; Uris A; Rubio C; Minin OV; Minin IV
    Sci Rep; 2020 Dec; 10(1):20279. PubMed ID: 33319808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Verification of the vertex powers of varifocal rigid contact lenses.
    Woods CA
    Cont Lens Anterior Eye; 2003 Dec; 26(4):181-7. PubMed ID: 16303516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion tuning with a varifocal diffractive-refractive hybrid lens.
    Harm W; Roider C; Jesacher A; Bernet S; Ritsch-Marte M
    Opt Express; 2014 Mar; 22(5):5260-9. PubMed ID: 24663866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.
    Kashima R; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2161-8. PubMed ID: 26670855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrically tunable gradient-index lenses via nematic liquid crystals with a method of spatially extended phase distribution.
    Wang YJ; Hsieh HA; Lin YH
    Opt Express; 2019 Oct; 27(22):32398-32408. PubMed ID: 31684454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Varifocal Graphene Metalens for Broadband Zoom Imaging Covering the Entire Visible Region.
    Wei S; Cao G; Lin H; Yuan X; Somekh M; Jia B
    ACS Nano; 2021 Mar; 15(3):4769-4776. PubMed ID: 33593050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and characteristics of a Maxwell force-driven liquid lens.
    Song X; Zhang H; Zhang Z; Zhao R; Jia D; Liu T
    Opt Express; 2021 Mar; 29(6):8323-8332. PubMed ID: 33820280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectric-elastomer-based fabrication method for varifocal microlens array.
    Wang L; Hayakawa T; Ishikawa M
    Opt Express; 2017 Dec; 25(25):31708-31717. PubMed ID: 29245842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material.
    Ye M; Wang B; Sato S
    Opt Express; 2008 Mar; 16(6):4302-8. PubMed ID: 18542526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adjustable hybrid diffractive/refractive achromatic lens.
    Valley P; Savidis N; Schwiegerling J; Dodge MR; Peyman G; Peyghambarian N
    Opt Express; 2011 Apr; 19(8):7468-79. PubMed ID: 21503055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer.
    Feng GH; Liu JH
    Appl Opt; 2013 Feb; 52(4):829-37. PubMed ID: 23385925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel High-Speed Resonant Frequency Tracking Method Using Transient Characteristics in a Piezoelectric Transducer.
    Moon J; Park S; Lim S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid crystal adaptive lens: beam translation and field meshing.
    Brinkley PF; Kowel ST; Chu C
    Appl Opt; 1988 Nov; 27(21):4578-86. PubMed ID: 20539611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):596-602. PubMed ID: 21429850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force.
    Erpelding TN; Hollman KW; O'Donnell M
    Exp Eye Res; 2007 Feb; 84(2):332-41. PubMed ID: 17141220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes.
    Chiu CW; Lin YC; Chao PC; Fuh AY
    Opt Express; 2008 Nov; 16(23):19277-84. PubMed ID: 19582020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alvarez varifocal X-ray lens.
    Dhamgaye V; Laundy D; Khosroabadi H; Moxham T; Baldock S; Fox O; Sawhney K
    Nat Commun; 2023 Jul; 14(1):4582. PubMed ID: 37524749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metasurface-based varifocal Alvarez lens at microwave frequencies.
    Goldhaber-Gordon Z; Tang AD; Corbella Bagot C; Mokim M; Silva SR; Cardin AE; Azad AK; Chen HT
    Opt Express; 2024 Jan; 32(2):2058-2066. PubMed ID: 38297743
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.