These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38568634)

  • 1. Motion prediction of tumbling uncooperative spacecraft during proximity operations.
    Li P; Wang M; Zhang Z; Zhang B; Wang Y
    Appl Opt; 2024 Mar; 63(8):1952-1960. PubMed ID: 38568634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient pose and motion estimation of non-cooperative target based on LiDAR.
    Li P; Wang M; Fu J; Zhang B
    Appl Opt; 2022 Sep; 61(27):7820-7829. PubMed ID: 36255904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LiDAR-Based Non-Cooperative Tumbling Spacecraft Pose Tracking by Fusing Depth Maps and Point Clouds.
    Zhao G; Xu S; Bo Y
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.
    Opromolla R; Fasano G; Rufino G; Grassi M
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target.
    Yin F; Chou W; Wu Y; Yang G; Xu S
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29597323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative Pose Determination of Uncooperative Spacecraft Based on Circle Feature.
    Liu Y; Zhang S; Zhao X
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocular Pose Estimation of an Uncooperative Spacecraft Using Convexity Defect Features.
    Han H; Kim H; Bang H
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range.
    Liu L; Zhao G; Bo Y
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27271633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LiDAR Dynamic Target Detection Based on Multidimensional Features.
    Xu A; Gao J; Sui X; Wang C; Shi Z
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D LiDAR Point Cloud Registration Based on IMU Preintegration in Coal Mine Roadways.
    Yang L; Ma H; Nie Z; Zhang H; Wang Z; Wang C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative pose estimation of uncooperative spacecraft using 2D-3D line correspondences.
    Liu Z; Liu H; Zhu Z; Song J
    Appl Opt; 2021 Aug; 60(22):6479-6486. PubMed ID: 34612883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive nonlinear robust relative pose control of spacecraft autonomous rendezvous and proximity operations.
    Sun L; Huo W; Jiao Z
    ISA Trans; 2017 Mar; 67():47-55. PubMed ID: 27989528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature.
    Gu B; Liu J; Xiong H; Li T; Pan Y
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34067737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets.
    Albee K; Oestreich C; Specht C; TerĂ¡n Espinoza A; Todd J; Hokaj I; Lampariello R; Linares R
    Front Robot AI; 2021; 8():641338. PubMed ID: 34604314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rectangular-structure-based pose estimation method for non-cooperative rendezvous.
    Zhang L; Zhu F; Hao Y; Pan W
    Appl Opt; 2018 Jul; 57(21):6164-6173. PubMed ID: 30117997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angle-Only Cooperative Orbit Determination Considering Attitude Uncertainty.
    Shi Y; Wang J; Liu C; Wang Y; Xu Q; Zhou X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity Estimation from LiDAR Sensors Motion Distortion Effect.
    Haas L; Haider A; Kastner L; Zeh T; Poguntke T; Kuba M; Schardt M; Jakobi M; Koch AW
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.
    Sun L; Huo W; Jiao Z
    ISA Trans; 2016 Jul; 63():11-19. PubMed ID: 26993103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations.
    Zhang L; Zhu F; Hao Y; Pan W
    Appl Opt; 2017 May; 56(15):4522-4531. PubMed ID: 29047884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient 3D Deep LiDAR Odometry.
    Wang G; Wu X; Jiang S; Liu Z; Wang H
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):5749-5765. PubMed ID: 36107901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.