These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38568648)

  • 1. Improving grating duty cycle uniformity: amplitude-splitting flat-top beam laser interference lithography.
    Xue D; Deng X; Dun X; Wang J; Wang Z; Cheng X
    Appl Opt; 2024 Mar; 63(8):2065-2069. PubMed ID: 38568648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for fabricating large-area gratings with a uniform duty cycle without a spatial beam modulator.
    Liang J; Wang C; Lu H; Wang X; Ni K; Zhou Q
    Opt Express; 2021 Aug; 29(17):27791-27806. PubMed ID: 34615188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active control technology of a diffraction grating wavefront by scanning beam interference lithography.
    Liu Z; Yang H; Li Y; Jiang S; Wang W; Song Y; Bayanheshig ; Li W
    Opt Express; 2021 Nov; 29(23):37066-37074. PubMed ID: 34808785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On amplitude beam splitting of tender X-rays (2-8 keV photon energy) using conical diffraction from reflection gratings with laminar profile.
    Jark W; Eichert D
    J Synchrotron Radiat; 2016 Jan; 23(1):91-7. PubMed ID: 26698049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid application of laser-focused atomic deposition and extreme ultraviolet interference lithography methods for manufacturing of self-traceable nanogratings.
    Liu J; Zhao J; Deng X; Yang S; Xue C; Wu Y; Tai R; Hu X; Dai G; Li T; Cheng X
    Nanotechnology; 2021 Apr; 32(17):175301. PubMed ID: 33461181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd's mirrors based interference lithography.
    Xue G; Lu H; Li X; Zhou Q; Wu G; Wang X; Zhai Q; Ni K
    Opt Express; 2020 Jan; 28(2):2179-2191. PubMed ID: 32121913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical measurement of depth and duty cycle for binary diffraction gratings with subwavelength features.
    Marciante JR; Farmiga NO; Hirsh JI; Evans MS; Ta HT
    Appl Opt; 2003 Jun; 42(16):3234-40. PubMed ID: 12790474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.
    Wen FJ; Chung PS
    Appl Opt; 2011 Jul; 50(19):3187-90. PubMed ID: 21743517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape memory of a polymer grating surface fabricated by two-beam interference lithography.
    Luo Y; Fang LN; Wei WH; Guan W; Dai YZ; Sun XC; Gao BR
    Appl Opt; 2022 Jan; 61(3):792-796. PubMed ID: 35200784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography.
    Nagaraj Rao RR; Bienert F; Moeller M; Bashir D; Hamri A; Celle F; Gamet E; Ahmed MA; Jourlin Y
    Opt Express; 2023 Jan; 31(1):371-380. PubMed ID: 36606973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional grating based interleaved angled MMI for high-uniformity wavelength division (de)multiplexing and surface-normal fiber packaging.
    Zhang Z; Liu T; Zhang K; Li M; Liu H; Li H; Niu P; Gu E
    Appl Opt; 2021 Jul; 60(19):5615-5622. PubMed ID: 34263853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of diffraction grating profiles in fabrication by electron-beam lithography.
    Okano M; Kikuta H; Hirai Y; Yamamoto K; Yotsuya T
    Appl Opt; 2004 Sep; 43(27):5137-42. PubMed ID: 15473232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a monolithic tunable laser based on equivalent-chirp grating reflectors.
    Dai Y; Xu K; Wu J; Li Y; Hong X; Guo H; Lin J
    Opt Lett; 2010 Dec; 35(23):3880-2. PubMed ID: 21124552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of tunable diffraction grating by imprint lithography with photoresist mold.
    Yamada I; Ikeda Y; Higuchi T
    Rev Sci Instrum; 2018 May; 89(5):053110. PubMed ID: 29864802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography.
    Wang L; Kirk E; Wäckerlin C; Schneider CW; Hojeij M; Gobrecht J; Ekinci Y
    Nanotechnology; 2014 Jun; 25(23):235305. PubMed ID: 24850475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Imaging of Plasmonic Concentric Circular Gratings Fabricated by Lens-Axicon Laser Interference Lithography.
    Mazloumi M; Sabat RG
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High efficiency geometric-phase polarization fan-out grating on silicon.
    Wan C; Lombardo D; Sarangan A; Zhan Q
    Opt Express; 2017 Oct; 25(20):24559-24565. PubMed ID: 29041400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of nano/micro dual-periodic structures by multi-beam evanescent wave interference lithography using spatial beats.
    Masui S; Torii Y; Michihata M; Takamasu K; Takahashi S
    Opt Express; 2019 Oct; 27(22):31522-31531. PubMed ID: 31684386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method.
    Li X; Ni K; Zhou Q; Wang X; Tian R; Pang J
    Opt Express; 2016 May; 24(10):10759-66. PubMed ID: 27409896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.