BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38568745)

  • 1. Structural Rearrangements of Pigeon Cryptochrome 4 Undergoing a Complete Redox Cycle.
    Schuhmann F; Ramsay JL; Kattnig DR; Solov'yov IA
    J Phys Chem B; 2024 Apr; 128(16):3844-3855. PubMed ID: 38568745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Post-activation Conformational Changes in Pigeon Cryptochrome 4.
    Schuhmann F; Kattnig DR; Solov'yov IA
    J Phys Chem B; 2021 Sep; 125(34):9652-9659. PubMed ID: 34327996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon.
    Zoltowski BD; Chelliah Y; Wickramaratne A; Jarocha L; Karki N; Xu W; Mouritsen H; Hore PJ; Hibbs RE; Green CB; Takahashi JS
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19449-19457. PubMed ID: 31484780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative properties and functions of type 2 and type 4 pigeon cryptochromes.
    Wang X; Jing C; Selby CP; Chiou YY; Yang Y; Wu W; Sancar A; Wang J
    Cell Mol Life Sci; 2018 Dec; 75(24):4629-4641. PubMed ID: 30264181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction kinetics and mechanism of magnetic field effects in cryptochrome.
    Solov'yov IA; Schulten K
    J Phys Chem B; 2012 Jan; 116(3):1089-99. PubMed ID: 22171949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic Insights into Cryptochrome Interprotein Interactions.
    Kimø SM; Friis I; Solov'yov IA
    Biophys J; 2018 Aug; 115(4):616-628. PubMed ID: 30078611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle.
    Nießner C; Denzau S; Peichl L; Wiltschko W; Wiltschko R
    J Exp Biol; 2014 Dec; 217(Pt 23):4221-4. PubMed ID: 25472972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational reconstruction reveals a candidate magnetic biocompass to be likely irrelevant for magnetoreception.
    Friis I; Sjulstok E; Solov'yov IA
    Sci Rep; 2017 Oct; 7(1):13908. PubMed ID: 29066765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons.
    Bolte P; Bleibaum F; Einwich A; Günther A; Liedvogel M; Heyers D; Depping A; Wöhlbrand L; Rabus R; Janssen-Bienhold U; Mouritsen H
    PLoS One; 2016; 11(3):e0147819. PubMed ID: 26953791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption Spectra of FAD Embedded in Cryptochromes.
    Nielsen C; Nørby MS; Kongsted J; Solov'yov IA
    J Phys Chem Lett; 2018 Jul; 9(13):3618-3623. PubMed ID: 29905481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark.
    Pooam M; Arthaut LD; Burdick D; Link J; Martino CF; Ahmad M
    Planta; 2019 Feb; 249(2):319-332. PubMed ID: 30194534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acuity of a cryptochrome and vision-based magnetoreception system in birds.
    Solov'yov IA; Mouritsen H; Schulten K
    Biophys J; 2010 Jul; 99(1):40-9. PubMed ID: 20655831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear polarization effects in cryptochrome-based magnetoreception.
    Wong SY; Solov'yov IA; Hore PJ; Kattnig DR
    J Chem Phys; 2021 Jan; 154(3):035102. PubMed ID: 33499614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic orientation in juvenile Atlantic herring (
    Laurien M; Mende L; Luhrmann L; Frederiksen A; Aldag M; Spiecker L; Clemmesen C; Solov'yov IA; Gerlach G
    J R Soc Interface; 2024 Jun; 21(215):20240035. PubMed ID: 38835248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoactivation of
    Berntsson O; Rodriguez R; Henry L; Panman MR; Hughes AJ; Einholz C; Weber S; Ihalainen JA; Henning R; Kosheleva I; Schleicher E; Westenhoff S
    Sci Adv; 2019 Jul; 5(7):eaaw1531. PubMed ID: 31328161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome.
    Sjulstok E; Lüdemann G; Kubař T; Elstner M; Solov'yov IA
    Biophys J; 2018 Jun; 114(11):2563-2572. PubMed ID: 29874607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons.
    Du XL; Wang J; Pan WS; Liu QJ; Wang XJ; Wu WJ
    Photochem Photobiol; 2014; 90(5):989-96. PubMed ID: 24689535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.